Assessing the mineralogy of the watershed and fan deposits of the Jezero crater paleolake system, Mars

We present results from geomorphic mapping and visible to near‐infrared spectral analyses of the Jezero crater paleolake basin and its associated watershed. The goal of this study is to understand the provenance of the sedimentary deposits within this open‐basin lake using a source‐to‐sink approach. Two fan deposits located within the basin have distinct visible to near‐infrared mineralogic signatures measured by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). The northern fan is spectrally characterized by a mixture of Mg‐rich carbonate and olivine, while the western fan is characterized by Fe/Mg‐smectite (e.g., saponite or nontronite) with variable amounts of Mg‐rich carbonate and olivine in isolated exposures. The watersheds of these deposits contain a variety of geomorphic units that are likely to have supplied sediment to the Jezero crater paleolake, as the fluvial valleys that fed the basin incise these units. The geomorphic units include exposures of Fe/Mg‐smectite‐, olivine‐, and Mg‐rich carbonate‐bearing terrain. We show that the difference in fan deposit mineralogy is a function of the areal exposure of the major geomorphic units within their watersheds. This indicates that the spectrally dominant aqueous alteration minerals in the fan deposits are primarily detrital, or transported, in nature and did not form in situ. We conclude that the aqueous alteration of the units in the watershed occurred prior to the fluvial activity that carved the valleys of the Jezero crater paleolake system, and that the two periods of aqueous activity are not genetically related.

[1]  J. Head,et al.  Episodic warming of early Mars by punctuated volcanism , 2014 .

[2]  John F. Mustard,et al.  Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars , 2014 .

[3]  P. Allen,et al.  Volumetric budget and grain-size fractionation of a geological sediment routing system: Eocene Escanilla Formation, south-central Pyrenees , 2014 .

[4]  S. Murchie,et al.  Revised CRISM Spectral Parameters and Summary Products , 2014 .

[5]  O. Alexandrov,et al.  Aligning Terrain Model and Laser Altimeter Point Clouds with the Ames Stereo Pipeline , 2014 .

[6]  Jean-Pierre Bibring,et al.  Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view , 2013 .

[7]  J. Mustard,et al.  Extensive linear ridge networks in Nili Fossae and Nilosyrtis, Mars: implications for fluid flow in the ancient crust , 2013 .

[8]  J. Head,et al.  Constraints on the history of open-basin lakes on Mars from the composition and timing of volcanic resurfacing , 2012 .

[9]  J. Head,et al.  Global modelling of the early Martian climate under a denser CO2 atmosphere: Water cycle and ice evolution , 2012, 1207.3993.

[10]  James W. Head,et al.  An overfilled lacustrine system and progradational delta in Jezero crater, Mars: Implications for Noachian climate , 2012 .

[11]  J. Head,et al.  An analysis of open-basin lake deposits on Mars: Evidence for the nature of associated lacustrine deposits and post-lacustrine modification processes , 2012 .

[12]  N. Mangold,et al.  A chronology of early Mars climatic evolution from impact crater degradation , 2012 .

[13]  M. A. Ivanov,et al.  Major episodes of geologic history of Isidis Planitia on Mars , 2012 .

[14]  Jean-Pierre Bibring,et al.  Subsurface water and clay mineral formation during the early history of Mars , 2011, Nature.

[15]  Noel Gorelick,et al.  Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi‐spectral data , 2011 .

[16]  S. Werner,et al.  Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars , 2011 .

[17]  B. Valero-Garcés,et al.  Geochemical processes in a Mediterranean Lake: a high-resolution study of the last 4,000 years in Zoñar Lake, southern Spain , 2011 .

[18]  M. Darby Dyar,et al.  Near‐infrared spectra of clinopyroxenes: Effects of calcium content and crystal structure , 2011 .

[19]  J. Head,et al.  Sequence and timing of conditions on early Mars , 2011 .

[20]  Brian M. Hynek,et al.  Updated global map of Martian valley networks and implications for climate and hydrologic processes , 2010 .

[21]  Michael Bruce Wyatt,et al.  Definitive evidence of Hesperian basalt in Acidalia and Chryse planitiae , 2010 .

[22]  Christian Heipke,et al.  Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: Characteristics and performance , 2010 .

[23]  F. Poulet,et al.  Ismenius Cavus, Mars: A deep paleolake with phyllosilicate deposits , 2010 .

[24]  M. Broxton,et al.  Ames Stereo Pipeline, NASA's Open Source Automated Stereogrammetry Software , 2010 .

[25]  D. Deocampo,et al.  Saline lake diagenesis as revealed by coupled mineralogy and geochemistry of multiple ultrafine clay phases: Pliocene Olduvai Gorge, Tanzania , 2009, American Journal of Science.

[26]  B. Hynek,et al.  Roaming zones of precipitation on ancient Mars as recorded in valley networks , 2009 .

[27]  Patrick C. McGuire,et al.  An improvement to the volcano-scan algorithm for atmospheric correction of CRISM and OMEGA spectral data , 2009, 0903.3672.

[28]  John F. Mustard,et al.  Identification of hydrated silicate minerals on Mars using MRO‐CRISM: Geologic context near Nili Fossae and implications for aqueous alteration , 2009 .

[29]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars investigation and data set from the Mars Reconnaissance Orbiter's primary science phase , 2009 .

[30]  S. Murchie,et al.  Composition, Morphology, and Stratigraphy of Noachian Crust around the Isidis basin , 2009 .

[31]  Raymond E. Arvidson,et al.  A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter , 2009 .

[32]  John F. Mustard,et al.  Orbital Identification of Carbonate-Bearing Rocks on Mars , 2008 .

[33]  J. Head,et al.  Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology , 2008 .

[34]  N. Izenberg,et al.  Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument , 2008, Nature.

[35]  John F. Mustard,et al.  Clay minerals in delta deposits and organic preservation potential on Mars , 2008 .

[36]  J. Head,et al.  The timing of martian valley network activity : Constraints from buffered crater counting , 2008 .

[37]  S. Werner The early martian evolution—Constraints from basin formation ages , 2008 .

[38]  M. Broxton,et al.  The Ames Stereo Pipeline: Automated 3D Surface Reconstruction from Orbital Imagery , 2008 .

[39]  G. Neukum,et al.  Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian , 2007 .

[40]  Jean-Pierre Bibring,et al.  Phyllosilicates in the Mawrth Vallis region of Mars , 2007 .

[41]  G. Neukum,et al.  Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust , 2007 .

[42]  M. J. Wolff,et al.  CRISM multispectral summary products: Parameterizing mineral diversity on Mars from reflectance , 2007 .

[43]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .

[44]  L. Edwards,et al.  Context Camera Investigation on board the Mars Reconnaissance Orbiter , 2007 .

[45]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[46]  M. Darby Dyar,et al.  Spectroscopy of synthetic Mg‐Fe pyroxenes I: Spin‐allowed and spin‐forbidden crystal field bands in the visible and near‐infrared , 2007 .

[47]  J. Head,et al.  Breccia dikes and crater‐related faults in impact craters on Mars: Erosion and exposure on the floor of a crater 75 km in diameter at the dichotomy boundary , 2006 .

[48]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[49]  Alan D. Howard,et al.  An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits , 2005 .

[50]  Alan D. Howard,et al.  An Intense Terminal Epoch of Widespread Fluvial Activity on Early Mars: 2. Increased Runoff and Paleolake Development , 2005 .

[51]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[52]  James W. Head,et al.  Fluvial sedimentary deposits on Mars: Ancient deltas in a crater lake in the Nili Fossae region , 2005 .

[53]  V. Hamilton,et al.  Evidence for extensive, olivine-rich bedrock on Mars , 2005 .

[54]  T. Maxwell,et al.  Channels in Martian valley networks: Discharge and runoff production , 2005 .

[55]  Jean-Pierre Bibring,et al.  Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View , 2005, Science.

[56]  François Poulet,et al.  OMEGA: Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité , 2004 .

[57]  R. Jaumann,et al.  HRSC: the High Resolution Stereo Camera of Mars Express , 2004 .

[58]  R. Clark,et al.  Discovery of Olivine in the Nili Fossae Region of Mars , 2003, Science.

[59]  P. Komadel,et al.  The influence of structural Fe, Al and Mg on the infrared OH bands in spectra of dioctahedral smectites , 2002, Clay Minerals.

[60]  Alan D. Howard,et al.  The case for rainfall on a warm, wet early Mars , 2002 .

[61]  Zhe Ding,et al.  Near-infrared spectroscopic study of nontronites and ferruginous smectite. , 2002, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[62]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[63]  Boris A. Ivanov,et al.  Mars/Moon Cratering Rate Ratio Estimates , 2001 .

[64]  N. Cabrol,et al.  The Evolution of Lacustrine Environments on Mars: Is Mars Only Hydrologically Dormant? , 2001 .

[65]  N. Cabrol,et al.  Distribution, Classification, and Ages of Martian Impact Crater Lakes , 1999 .

[66]  R. Clark,et al.  Hydrous carbonates on Mars?: Evidence from Mariner 6/7 infrared spectrometer and ground-based telescopic spectra , 1994 .

[67]  S. McLennan Weathering and Global Denudation , 1993, The Journal of Geology.

[68]  H. Frey,et al.  A new survey of multiring impact basins on Mars , 1990 .

[69]  R. Clark,et al.  High spectral resolution reflectance spectroscopy of minerals , 1990 .

[70]  P. Schultz,et al.  Sequence and mechanisms of deformation around the Hellas and Isidis Impact Basins on Mars , 1989 .

[71]  S. Erard,et al.  Results from the ISM experiment , 1989, Nature.

[72]  Steven W. Squyres,et al.  Ancient aqueous sedimentation on Mars , 1988 .

[73]  W. Ridley,et al.  Relation of the spectroscopic reflectance of olivine to mineral chemistry and some remote sensing implications , 1987 .

[74]  M. Carr Water on Mars , 1987, Nature.

[75]  S. Gaffey,et al.  Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 um): Anhydrous carbonate minerals , 1987 .

[76]  Sean C. Solomon,et al.  Mars: Thickness of the lithosphere from the tectonic response to volcanic loads , 1985 .

[77]  M. W. Binford Paleolimnology of the Peten Lake district, Guatemala , 1983, Hydrobiologia.

[78]  M. Brenner,et al.  Paleolimnology of the Peten Lake District, Guatemala , 1983 .

[79]  B. Jones,et al.  Clay Minerals of Lake Abert, an Alkaline, Saline Lake , 1983 .

[80]  D. Pieri Martian valleys: morphology, distribution, age, and origin. , 1980, Science.

[81]  P. Stoffers,et al.  Clay mineral diagenesis in two East African lake sediments , 1980, Clay minerals.

[82]  A. Strong,et al.  Satellite observations of calcium carbonate precipitations in the Great Lakes1 , 1978 .

[83]  John B. Adams,et al.  Visible and near‐infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system , 1974 .

[84]  R. Thomas,et al.  Distribution, Composition and Characteristics of the Surficial Sediments of Lake Ontario , 1972 .

[85]  G. Brunskill FAYETTEVILLE GREEN LAKE, NEW YORK. II. PRECIPITATION AND SEDIMENTATION OF CALCITE IN A MEROMICTIC LAKE WITH LAMINATED SEDIMENTS1 , 1969 .

[86]  C. E. Weir,et al.  LATTICE FREQUENCIES AND ROTATIONAL BARRIERS FOR INORGANIC CARBONATES AND NITRATES FROM LOW TEMPERATURE INFRARED SPECTROSCOPY , 1962 .

[87]  E. Lippincott,et al.  Lattice Frequencies and Rotational Barriers for Inorganic Carbonates and Nitrates , 1962 .

[88]  Johnathan E. Moore Petrography of Northeastern Lake Michigan Bottom Sediments , 1961 .

[89]  L. A. Bauer Relation between the secular variation of the Earth's magnetism and solar activity—Continued , 1918 .

[90]  M. Brenner Paleolimnology of the Petén Lake district, Guatemala , 2004, Hydrobiologia.

[91]  M. Malin,et al.  The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission , 2004 .

[92]  J. Head,et al.  The Syrtis Major volcanic province, Mars: Synthesis from Mars Global Surveyor data , 2004 .

[93]  B. Jones,et al.  The Mineralogy and Related Chemistry of Lake Sediments , 1978 .

[94]  K. Hsü,et al.  Freshwater Carbonate Sedimentation , 1978 .

[95]  D. H. Scott,et al.  Geologic map of Mars , 1976 .

[96]  J. Salisbury,et al.  Visible and near infrared spectra of minerals and rocks. II. Carbonates , 1971 .

[97]  J. Rich THREE CRITICAL ENVIRONMENTS OF DEPOSITION, AND CRITERIA FOR RECOGNITION OF ROCKS DEPOSITED IN EACH OF THEM , 1951 .