Generation of plasma blocks accelerated by nonlinear forces from ultraviolet KrF laser pulses for fast ignition

[1]  R. Fabbro,et al.  Ultrahigh-Pressure Laser-Driven Shock-Wave Experiments at 0.26 μm Wavelength , 1984 .

[2]  New ellipsoid cavity model for high-intensity laser–plasma interaction , 2008 .

[3]  Heinrich Hora,et al.  Ultrahigh-density deuterium of Rydberg matter clusters for inertial confinement fusion targets , 2009 .

[4]  H. Hora,et al.  Layers from initial Rayleigh density profiles by directed nonlinear force driven plasma blocks for alternative fast ignition , 2009 .

[5]  Michael D. Perry,et al.  Ignition and high gain with ultrapowerful lasers , 1994 .

[6]  H. Hora Developments in inertial fusion energy and beam fusion at magnetic confinement , 2004 .

[7]  M. Borghesi,et al.  Absorption of subpicosecond UV laser pulses during interaction with solid targets. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  R. Sadighi-Bonabi,et al.  Observation of quasi mono-energetic electron bunches in the new ellipsoid cavity model , 2009 .

[9]  H. Hora,et al.  Numerical modelling of production of ultrahigh-current-density ion beams by short-pulse laser-plasma interaction , 2004 .

[10]  H. Hora,et al.  Analytical description of rippling effect and ion acceleration in plasma produced by a short laser pulse , 2006 .

[11]  G. Miley,et al.  Threshold for laser driven block ignition for fusion energy from hydrogen boron-11 , 2009 .

[12]  Xiangyang Song,et al.  Explosive supersaturated amplification on 3d→2p Xe(L) hollow atom transitions at λ ∼ 2.7−2.9 Å , 2005 .

[13]  John Giuliani,et al.  Efficient electron beam deposition in the gas cell of the Electra laser , 2004 .

[14]  R. Sadighi-Bonabi,et al.  Improving the relativistic self-focusing of intense laser beam in plasma using density transition , 2009 .

[15]  J. Badziak,et al.  Laser-driven generation of fast particles , 2007 .

[16]  H. Hora,et al.  Laser fusion with nonlinear force driven plasma blocks: Thresholds and dielectric effects , 2009 .

[17]  Victor Malka,et al.  Proposed scheme for compact GeV laser plasma accelerator , 2006 .

[18]  Wolfgang Sandner,et al.  First demonstration of collimation and monochromatisation of a laser accelerated proton burst , 2008 .

[19]  Andrew J. Schmitt,et al.  Pathway to a lower cost high repetition rate ignition facility , 2005 .

[20]  R. Sadighi-Bonabi,et al.  Evaluation of Transmutation of 137Cs(γ,n) 136Cs Using Ultra-Intense Lasers in Solid Targets , 2006 .

[21]  H. Hora,et al.  Generation of picosecond high-density ion fluxes by skin-layer laser-plasma interaction , 2005 .

[22]  W. Manheimer,et al.  Effects of viscosity in modeling laser fusion implosions , 2007 .

[23]  A. A. Kozlov,et al.  Investigations of ion streams emitted from plasma produced with a high-power picosecond laser , 1999 .

[24]  The laser-matter interaction meets the high energy physics: Laser-plasma accelerators and bright X/gamma-ray sources , 2005 .

[25]  Dmitry Varentsov,et al.  Present and future perspectives for high energy density physics with intense heavy ion and laser beams , 2005 .

[26]  H. Hora New aspects for fusion energy using inertial confinement , 2007 .

[27]  H. Hora,et al.  Inhibition factor reduces fast ignition threshold for laser fusion using nonlinear force driven block acceleration , 2008 .

[28]  H. Hora,et al.  Nonlinear force driven plasma blocks igniting solid density hydrogen boron: Laser fusion energy without radioactivity , 2009 .

[29]  G. Miley,et al.  Collective alpha particle stopping for reduction of the threshold for laser fusion using nonlinear force driven plasma blocks , 2009 .

[30]  Denavit Absorption of high-intensity subpicosecond lasers on solid density targets. , 1992, Physical review letters.

[31]  M. V. Gorbunkov,et al.  Laser-electron generator for X-ray applications in science and technology , 2008 .

[32]  T. Schlegel,et al.  Laser accelerated ions and electron transport in ultra-intense laser matter interaction , 2005 .

[33]  Karel Rohlena,et al.  Computations for nonlinear force driven plasma blocks by picosecond laser pulses for fusion , 2005, Journal of Plasma Physics.

[34]  M. Borghesi,et al.  Impulsive electric fields driven by high-intensity laser matter interactions , 2007 .

[35]  K. Ueda,et al.  Advanced techniques of high-efficiency pulse compression for KrF lasers , 1993 .

[36]  N. V. Didenko,et al.  GARPUN-MTW: A hybrid Ti:Sapphire/KrF laser facility for simultaneous amplification of subpicosecond/nanosecond pulses relevant to fast-ignition ICF concept , 2007 .

[37]  M. Yu,et al.  Quasi-monoenergetic proton beam generation from a double-layer solid target using an intense circularly polarized laser , 2009 .

[38]  V. Malka,et al.  Electron and proton beams produced by ultra short laser pulses in the relativistic regime , 2004 .

[39]  E. D'humieres,et al.  Stochastic Heating in Ultra High Intensity Laser-Plasma Interaction , 2005, 2007 IEEE 34th International Conference on Plasma Science (ICOPS).

[40]  A. Pukhov,et al.  Generation of quasi-monoenergetic electron beams using ultrashort and ultraintense laser pulses , 2005 .

[41]  Raymond J. Beach,et al.  Diode-Pumped Solid-State Lasers for Inertial Fusion Energy , 1994 .

[42]  Yasuhiko Sentoku,et al.  High energy proton acceleration in interaction of short laser pulse with dense plasma target , 2003 .

[43]  H. Hora,et al.  Production of ultrahigh-current-density ion beams by short-pulse skin-layer laser–plasma interaction , 2004 .

[44]  Energy Evaluation of Mono‐Energetic Electron Beam Produced by Ellipsoid Cavity Model in the Bubble Regime , 2009 .