A bacterial effector targets host DH‐PH domain RhoGEFs and antagonizes macrophage phagocytosis

[1]  M. Ding,et al.  Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement. , 2009, Molecular cell.

[2]  J. Chai,et al.  Structural insights into host GTPase isoform selection by a family of bacterial GEF mimics , 2009, Nature Structural &Molecular Biology.

[3]  N. Huang,et al.  A bacterial type III effector family uses the papain-like hydrolytic activity to arrest the host cell cycle , 2009, Proceedings of the National Academy of Sciences.

[4]  B. Kenny,et al.  The effector repertoire of enteropathogenic E. coli: ganging up on the host cell , 2009, Current opinion in microbiology.

[5]  M. Jepson,et al.  The mechanisms used by enteropathogenic Escherichia coli to control filopodia dynamics , 2008, Cellular microbiology.

[6]  Hongtao Li,et al.  Structure of a Shigella effector reveals a new class of ubiquitin ligases , 2008, Nature Structural &Molecular Biology.

[7]  Samuel I. Miller,et al.  Structure and function of Salmonella SifA indicate that its interactions with SKIP, SseJ, and RhoA family GTPases induce endosomal tubulation. , 2008, Cell host & microbe.

[8]  Irene C. Blat,et al.  MLK3 limits activated Galphaq signaling to Rho by binding to p63RhoGEF. , 2008, Molecular cell.

[9]  Hui-Chun Cheng,et al.  Structural mechanism of WASP activation by the enterohaemorrhagic E. coli effector EspFU , 2008, Nature.

[10]  Wendell A. Lim,et al.  The pathogen protein EspFU hijacks actin polymerization using mimicry and multivalency , 2008, Nature.

[11]  E. Caron,et al.  EspJ of enteropathogenic and enterohaemorrhagic Escherichia coli inhibits opsono-phagocytosis , 2008, Cellular microbiology.

[12]  G. Frankel,et al.  Attaching effacing Escherichia coli and paradigms of Tir‐triggered actin polymerization: getting off the pedestal , 2008, Cellular microbiology.

[13]  R. Neubig,et al.  Structure of Gαq-p63RhoGEF-RhoA Complex Reveals a Pathway for the Activation of RhoA by GPCRs , 2007, Science.

[14]  C. Sasakawa,et al.  The enteropathogenic E. coli effector EspB facilitates microvillus effacing and antiphagocytosis by inhibiting myosin function. , 2007, Cell host & microbe.

[15]  J. Dixon,et al.  Interactions of bacterial effector proteins with host proteins. , 2007, Current opinion in immunology.

[16]  Hans Wolf-Watz,et al.  Identification of a molecular target for the Yersinia protein kinase A. , 2007, Molecular cell.

[17]  C. Der,et al.  Auto-inhibition of the Dbl Family Protein Tim by an N-terminal Helical Motif* , 2007, Journal of Biological Chemistry.

[18]  She Chen,et al.  The Phosphothreonine Lyase Activity of a Bacterial Type III Effector Family , 2007, Science.

[19]  Hans Wolf-Watz,et al.  Protein delivery into eukaryotic cells by type III secretion machines , 2006, Nature.

[20]  B. Kenny,et al.  The enteropathogenic Escherichia coli EspF effector molecule inhibits PI‐3 kinase‐mediated uptake independently of mitochondrial targeting , 2006, Cellular microbiology.

[21]  M. Donnenberg,et al.  Analysis of the Function of Enteropathogenic Escherichia coli EspB by Random Mutagenesis , 2006, Infection and Immunity.

[22]  E. Caron,et al.  Subversion of actin dynamics by EPEC and EHEC. , 2006, Current opinion in microbiology.

[23]  W. Dietrich,et al.  Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin , 2006, Nature Genetics.

[24]  T. Hughes,et al.  Identification of a Bacterial Type III Effector Family with G Protein Mimicry Functions , 2006, Cell.

[25]  G. Frankel,et al.  Enteropathogenic and Enterohemorrhagic Escherichia coli Infections: Translocation, Translocation, Translocation , 2005, Infection and Immunity.

[26]  Klaus Aktories,et al.  Bacterial cytotoxins: targeting eukaryotic switches , 2005, Nature Reviews Microbiology.

[27]  M. Waldor,et al.  The Locus of Enterocyte Effacement-Encoded Effector Proteins All Promote Enterohemorrhagic Escherichia coli Pathogenicity in Infant Rabbits , 2005, Infection and Immunity.

[28]  É. Oswald,et al.  TccP is an enterohaemorrhagic Escherichia coli O157:H7 type III effector protein that couples Tir to the actin‐cytoskeleton † , 2004, Cellular microbiology.

[29]  J. Otlewski,et al.  The crystal structure of RhoA in complex with the DH/PH fragment of PDZRhoGEF, an activator of the Ca(2+) sensitization pathway in smooth muscle. , 2004, Structure.

[30]  J. Leong,et al.  EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. , 2004, Developmental cell.

[31]  S. Clare,et al.  Identification of a Novel Citrobacter rodentium Type III Secreted Protein, EspI, and Roles of This and Other Secreted Proteins in Infection , 2004, Infection and Immunity.

[32]  T. Pawson,et al.  Dissecting virulence: systematic and functional analyses of a pathogenicity island. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Harry L. T. Mobley,et al.  Pathogenic Escherichia coli , 2004, Nature Reviews Microbiology.

[34]  Jack E. Dixon,et al.  Cleavage of Arabidopsis PBS1 by a Bacterial Type III Effector , 2003, Science.

[35]  X. Tu,et al.  EspH, a new cytoskeleton‐modulating effector of enterohaemorrhagic and enteropathogenic Escherichia coli , 2003, Molecular microbiology.

[36]  J. Dixon,et al.  A Yersinia Effector and a Pseudomonas Avirulence Protein Define a Family of Cysteine Proteases Functioning in Bacterial Pathogenesis , 2002, Cell.

[37]  B. Kenny,et al.  Co‐ordinate regulation of distinct host cell signalling pathways by multifunctional enteropathogenic Escherichia coli effector molecules , 2002, Molecular microbiology.

[38]  A. Hall,et al.  Vav regulates activation of Rac but not Cdc42 during FcγR-mediated phagocytosis , 2002 .

[39]  B. Finlay,et al.  Enteropathogenic Escherichia coli mediates antiphagocytosis through the inhibition of PI 3‐kinase‐dependent pathways , 2001, The EMBO journal.

[40]  Xin-Yun Huang,et al.  Structural Basis for Relief of Autoinhibition of the Dbl Homology Domain of Proto-Oncogene Vav by Tyrosine Phosphorylation , 2000, Cell.

[41]  M. Caligiuri,et al.  Identification of a gene at 11q23 encoding a guanine nucleotide exchange factor: evidence for its fusion with MLL in acute myeloid leukemia. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[42]  C. Hedberg,et al.  Food-related illness and death in the United States. , 1999, Emerging infectious diseases.

[43]  Takayuki Kato,et al.  Cooperation between mDia1 and ROCK in Rho-induced actin reorganization , 1999, Nature Cell Biology.

[44]  J. Gutkind,et al.  A Novel PDZ Domain Containing Guanine Nucleotide Exchange Factor Links Heterotrimeric G Proteins to Rho* , 1999, The Journal of Biological Chemistry.

[45]  A. Hall,et al.  Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. , 1998, Science.

[46]  J. Mao,et al.  Guanine nucleotide exchange factor GEF115 specifically mediates activation of Rho and serum response factor by the G protein alpha subunit Galpha13. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[47]  P C Sternweis,et al.  Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. , 1998, Science.

[48]  A. Gilman,et al.  p115 RhoGEF, a GTPase activating protein for Gα12 and Gα13 , 1998 .

[49]  K. Hahn,et al.  Agents That Inhibit Rho, Rac, and Cdc42 Do Not Block Formation of Actin Pedestals in HeLa Cells Infected with Enteropathogenic Escherichia coli , 1998, Infection and Immunity.

[50]  A. Hall,et al.  Rho GTPases and the actin cytoskeleton. , 1998, Science.

[51]  B. Finlay,et al.  Enteropathogenic E. coli (EPEC) Transfers Its Receptor for Intimate Adherence into Mammalian Cells , 1997, Cell.

[52]  M. Mann,et al.  Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1 , 1997, Nature.

[53]  C. Fiorentini,et al.  Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine , 1997, Nature.

[54]  K. Fujisawa,et al.  p160ROCK, a Rho‐associated coiled‐coil forming protein kinase, works downstream of Rho and induces focal adhesions , 1997, FEBS letters.

[55]  G. Bollag,et al.  Identification of a Novel Guanine Nucleotide Exchange Factor for the Rho GTPase* , 1996, The Journal of Biological Chemistry.

[56]  William Clevenger,et al.  Cloning and Characterization of an Alternatively Processed Human Type II Interleukin-1 Receptor mRNA* , 1996, The Journal of Biological Chemistry.

[57]  R. Treisman,et al.  The Rho family GTPases RhoA, Racl , and CDC42Hsregulate transcriptional activation by SRF , 1995, Cell.

[58]  J. Kaper,et al.  Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector , 1991, Infection and immunity.

[59]  G. Donelli,et al.  Cytotoxic necrotizing factor production by hemolytic strains of Escherichia coli causing extraintestinal infections , 1987, Journal of clinical microbiology.

[60]  G. Frankel,et al.  Enteropathogenic Escherichia coli: unravelling pathogenesis. , 2005, FEMS microbiology reviews.

[61]  A. Hall,et al.  Vav regulates activation of Rac but not Cdc42 during FcgammaR-mediated phagocytosis. , 2002, Molecular biology of the cell.

[62]  M. Schwartz,et al.  Determination of GTP loading on Rho. , 2000, Methods in enzymology.

[63]  B. Finlay,et al.  Enteropathogenic Escherichia coli inhibits phagocytosis. , 1999, Infection and immunity.