Instrumental processes, entropies, information in quantum continual measurements

In this paper we will give a short presentation of the quantum Levy-Khinchin formula andof the formulation of quantum continual measurements based on stochastic differentialequations, matters which we had the pleasure to work on in collaboration with Prof.Holevo. Then we will begin the study of various entropies and relative entropies, whichseem to be promising quantities for measuring the information content of the continualmeasurement under consideration and for analysing its asymptotic behaviour.

[1]  Entropy and Information Gain in Quantum Continual Measurements , 2000, quant-ph/0012115.

[2]  Viacheslav P. Belavkin,et al.  Nondemolition measurements, nonlinear filtering and dynamic programming of quantum stochastic processes , 1989 .

[3]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[4]  M. Ozawa On information gain by quantum measurements of continuous observables , 1986 .

[5]  Alberto Barchielli Probability operators and convolution semigroups of instruments in quantum probability , 1989 .

[6]  Alberto Barchielli,et al.  Quantum stochastic calculus, operation valued stochastic processes, and continual measurements in quantum mechanics , 1985 .

[7]  A. Holevo,et al.  An analogue of Hunt's representation theorem in quantum probability , 1993 .

[8]  V. P. Belavkin,et al.  A new wave equation for a continuous nondemolition measurement , 1989 .

[9]  Andrew G. Glen,et al.  APPL , 2001 .

[10]  A. Holevo A noncommutative generalization of conditionally positive definite functions , 1988 .

[11]  Ralph Duncan James,et al.  Proceedings of the International Congress of Mathematicians , 1975 .

[12]  Alberto Barchielli,et al.  A model for the macroscopic description and continual observations in quantum mechanics , 1982 .

[13]  A. Paganoni,et al.  On stochastic differential equations and semigroups of probability operators in quantum probability , 1998 .

[14]  Alberto Barchielli,et al.  Convolution semigroups in quantum probability and quantum stochastic calculus , 1989 .

[15]  Alberto Barchielli,et al.  Statistics of continuous trajectories in quantum mechanics: Operation-valued stochastic processes , 1983 .

[16]  A. Paganoni,et al.  On the Asymptotic Behaviour of Some Stochastic Differential Equations for Quantum States , 2003, Infinite Dimensional Analysis, Quantum Probability and Related Topics.

[17]  Viacheslav P. Belavkin,et al.  A continuous counting observation and posterior quantum dynamics , 1989 .

[18]  Alexander Semenovich Holevo,et al.  Levy Processes and Continuous Quantum Measurements , 2001 .

[19]  Kim C. Border,et al.  Infinite dimensional analysis , 1994 .

[20]  M. Sentís Quantum theory of open systems , 2002 .

[21]  Osamu Hirota,et al.  "Quantum Communication, Computing, and Measurement" , 2012 .

[22]  A. Paganoni,et al.  A note on a formula of the Lévy-Khinchin type in quantum probability , 1996, Nagoya Mathematical Journal.

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  R. Wolpert Lévy Processes , 2000 .

[25]  Alberto Barchielli,et al.  Constructing quantum measurement processes via classical stochastic calculus , 1995 .

[26]  Limit theorems for repeated measurements and continuous measurement processes , 1989 .

[27]  Alberto Barchielli,et al.  A quantum analogue of Hunt's representation theorem for the generator of convolution semigroups on Lie groups , 1991 .

[28]  James S. Harris,et al.  Probability theory and mathematical statistics , 1998 .