The excavate protozoan phyla Metamonada Grassé emend. (Anaeromonadea, Parabasalia, Carpediemonas, Eopharyngia) and Loukozoa emend. (Jakobea, Malawimonas): their evolutionary affinities and new higher taxa.
暂无分享,去创建一个
[1] T. Cavalier-smith,et al. Eukaryote kingdoms: seven or nine? , 1981, Bio Systems.
[2] T. Fenchel,et al. Percolomonas cosmopolitus (Ruinen) n.gen., a new type of filter feeding flagellate from marine plankton , 1986, Journal of the Marine Biological Association of the United Kingdom.
[3] Terry Gaasterland,et al. The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[4] G. Brugerolle,et al. Ultrastructure of Trimastix convexa hollande, an amitochondriate anaerobic flagellate with a previously undescribed organization , 1997 .
[5] David J. Patterson,et al. The ultrastructure of Carpediemonas membranifera (Eukaryota) with reference to the “excavate hypothesis” , 1999 .
[6] G. Wu,et al. Evolutionary relationships of the glucokinase from the amitochondriate protist, Trichomonas vaginalis. , 2001, Gene.
[7] N. Iversen,et al. Microbial diversity and activity in a Danish Fjord with anoxic deep water , 1995 .
[8] T. Cavalier-smith,et al. Molecular phylogeny of the free-living archezoanTrepomonas agilis and the nature of the first eukaryote , 1996, Journal of Molecular Evolution.
[9] A. Simpson,et al. On Core Jakobids and Excavate Taxa: The Ultrastructure of Jakoba incarcerata , 2001, The Journal of eukaryotic microbiology.
[10] T. Cavalier-smith,et al. Phylogeny of Choanozoa, Apusozoa, and Other Protozoa and Early Eukaryote Megaevolution , 2003, Journal of Molecular Evolution.
[11] T. Cavalier-smith,et al. A revised six‐kingdom system of life , 1998, Biological reviews of the Cambridge Philosophical Society.
[12] H. Kirby. Flagellate and host relationships of trichomonad flagellates. , 1947, The Journal of parasitology.
[13] W. Doolittle,et al. Molecular Phylogeny of Three Oxymonad Genera: Pyrsonympha, Dinenympha and Oxymonas , 2003, The Journal of eukaryotic microbiology.
[14] C. O'kelly,et al. Ultrastructure of Trimastix pyriformis (Klebs) Bernard et al.: similarities of Trimastix species with retortamonad and jakobid flagellates. , 1999, Protist.
[15] I. Busse,et al. Phylogenetic position of Rhynchopus sp. and Diplonema ambulator as indicated by analyses of euglenozoan small subunit ribosomal DNA. , 2002, Gene.
[16] J. Corliss. An interim utilitarian [user-friendly] hierarchical classification and characterization of the protists , 1994 .
[17] D. Horner,et al. Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles , 2002, The EMBO journal.
[18] W. Doolittle,et al. Evidence that eukaryotic triosephosphate isomerase is of alpha-proteobacterial origin. , 1997, Proceedings of the National Academy of Sciences of the United States of America.
[19] T. Embley,et al. Early branching eukaryotes? , 1998, Current opinion in genetics & development.
[20] T. Cavalier-smith,et al. The root of the eukaryote tree pinpointed , 2003, Current Biology.
[21] Charles F. Delwiche,et al. Tracing the Thread of Plastid Diversity through the Tapestry of Life , 1999, The American Naturalist.
[22] J. Felsenstein. Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .
[23] I. Bolívar,et al. SSU rRNA-based phylogenetic position of the genera Amoeba and Chaos (Lobosea, Gymnamoebia): the origin of gymnamoebae revisited. , 2001, Molecular biology and evolution.
[24] Andrew J. Roger,et al. A Cyanobacterial Gene in Nonphotosynthetic Protists—An Early Chloroplast Acquisition in Eukaryotes? , 2002, Current Biology.
[25] J. Corliss. The kingdom Protista and its 45 phyla. , 1984, Bio Systems.
[26] R. Blanton,et al. The heterolobosea (Sarcodina: Rhizopoda), a new class uniting the Schizopyrenida and the Acrasidae (Acrasida) , 1985 .
[27] T. Cavalier-smith. A 6-Klngdom Classification And A Unified Phylogeny , 1983 .
[28] D. Horner,et al. Chaperonin 60 phylogeny provides further evidence for secondary loss of mitochondria among putative early-branching eukaryotes. , 2001, Molecular biology and evolution.
[29] Andrew J. Roger,et al. Reconstructing Early Events in Eukaryotic Evolution , 1999, The American Naturalist.
[30] G. B. Bouck. The Biology of Free‐Living Heterotrophic Flagellates. , 1993 .
[31] T. Cavalier-smith,et al. Molecular Phylogeny of Centrohelid Heliozoa, a Novel Lineage of Bikont Eukaryotes That Arose by Ciliary Loss , 2003, Journal of Molecular Evolution.
[32] J. Tachezy,et al. Mitochondrial type iron-sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. , 2001, Molecular biology and evolution.
[33] T. Cavalier-smith,et al. Rooting the Eukaryote Tree by Using a Derived Gene Fusion , 2002, Science.
[34] M. Sogin,et al. Giardia lamblia expresses a proteobacterial-like DnaK homolog. , 2001, Molecular biology and evolution.
[35] M. Flavin,et al. Reclinomonas americana N. G., N. Sp., a New Freshwater Heterotrophic Flagellate , 1993, The Journal of eukaryotic microbiology.
[36] T. Cavalier-smith. Principles of Protein and Lipid Targeting in Secondary Symbiogenesis: Euglenoid, Dinoflagellate, and Sporozoan Plastid Origins and the Eukaryote Family Tree 1 , 2 , 1999, The Journal of eukaryotic microbiology.
[37] P. J. Johnson,et al. Origins of hydrogenosomes and mitochondria: evolution and organelle biogenesis. , 2000, Current opinion in microbiology.
[38] T. Cavalier-smith,et al. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. , 2002, International journal of systematic and evolutionary microbiology.
[39] B. Lang,et al. The Closest Unicellular Relatives of Animals , 2002, Current Biology.
[40] M. Sogin,et al. New Insights into the Phylogeny of Trichomonads Inferred from Small Subunit rRNA Sequences. , 1998, Protist.
[41] M. Sogin,et al. Phylogenetic Position of the Trichomonad Parasite of Turkeys, Histomonas meleagridis (Smith) Tyzzer, Inferred from Small Subunit rRNA Sequence1 , 2001, The Journal of eukaryotic microbiology.
[42] H. Phillipe. The molecular phylogeny of eukaryota: solid facts and uncertainties , 1998 .
[43] N. D. Levine,et al. A REVISED CLASSIFICATION OF THE PHYLUM PROTOZOA. , 1964, The Journal of protozoology.
[44] C. O'kelly,et al. Malawimonas jakobiformis n. gen., n. sp. (Malawimonadidae n. fam.): A Jakoba‐like Heterotrophic Nanoflagellate with Discoidal Mitochondrial Cristae , 1999 .
[45] W. Doolittle,et al. The chaperonin genes of jakobid and jakobid-like flagellates: implications for eukaryotic evolution. , 2002, Molecular biology and evolution.
[46] Phylogenetic position of the Sphaeropleaceae (Chlorophyta) , 2002, Plant Systematics and Evolution.
[47] S. P. Gibbs,et al. The chloroplasts of Euglena may have evolved from symbiotic green algae , 1978 .
[48] H. Philippe,et al. Collodictyon triciliatum and Diphylleia rotans (=Aulacomonas submarina) form a new family of flagellates (Collodictyonidae) with tubular mitochondrial cristae that is phylogenetically distant from other flagellate groups. , 2002, Protist.
[49] M. Sogin,et al. A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.
[50] Detlef D. Leipe,et al. Evolutionary history of "early-diverging" eukaryotes: the excavate taxon Carpediemonas is a close relative of Giardia. , 2002, Molecular biology and evolution.
[51] 宁北芳,et al. 疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .
[52] Hervé Philippe,et al. Early–branching or fast–evolving eukaryotes? An answer based on slowly evolving positions , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[53] T. Cavalier-smith,et al. Kingdom protozoa and its 18 phyla. , 1993, Microbiological reviews.
[54] A. Simpson,et al. The ultrastructure of Trimastix marina Kent 1880 (Eukaryota), an excavate flagellate , 2000 .
[55] F. G. Wallace,et al. A newly revised classification of the protozoa. , 1980, The Journal of protozoology.
[56] T. Cavalier-smith,et al. Phylogenetic Analysis of Eukaryotes Using Heat-Shock Protein Hsp90 , 2003, Journal of Molecular Evolution.
[57] T. Cavalier-smith,et al. Phylogeny and classification of phylum Cercozoa (Protozoa). , 2003, Protist.
[58] T. Cavalier-smith. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. , 2002, International journal of systematic and evolutionary microbiology.
[59] A. Simpson,et al. An ultrastructural study of a free-living retortamonad, Chilomastix cuspidata (Larsen & Patterson, 1990) n. comb. (Retortamonadida, Protista) , 1997 .
[60] M. A. Farmer. Ultrastructure of Ditrichomonas honigbergii N. G., N. Sp. (Parabasalia) and Its Relationship to Amitochondrial Protists , 1993 .
[61] T. Cavalier-smith. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[62] R. Barnes,et al. A Synoptic Classification of Living Organisms. , 1984 .
[63] M. Sogin,et al. Evolutionary relationships among "jakobid" flagellates as indicated by alpha- and beta-tubulin phylogenies. , 2001, Molecular biology and evolution.
[64] T. Cavalier-smith. Amoeboflagellates and mitochondrial cristae in eukaryote evolution: megasystematics of the new protozoan subkingdoms eozoa and neozoa , 1997 .
[65] A. Knoll. Learning to tell Neoproterozoic time. , 2000, Precambrian research.
[66] A. Simpson,et al. Oxymonads are closely related to the excavate taxon Trimastix. , 2001, Molecular biology and evolution.
[67] C. O'kelly. The Jakobid Flagellates: Structural Features of Jakoba, Reclinomonas and Histiona and Implications for the Early Diversification of Eukaryotes , 1993 .
[68] M. Miles,et al. An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. , 2002, Molecular biology and evolution.
[69] A. Simpson. The identity and composition of the Euglenozoa , 1997 .
[70] A. Roger,et al. The First Sexual Lineage and the Relevance of Facultative Sex , 1999, Journal of Molecular Evolution.
[71] Detlef D. Leipe,et al. Small subunit ribosomal RNA+ of Hexamita inflata and the quest for the first branch in the eukaryotic tree. , 1993, Molecular and biochemical parasitology.
[72] T. Cavalier-smith,et al. The Simultaneous Symbiotic Origin of Mitochondria, Chloroplasts, and Microbodies , 1987, Annals of the New York Academy of Sciences.
[73] D. Patterson. The evolution of protozoa. , 1988, Memorias do Instituto Oswaldo Cruz.
[74] Frank A Corsetti,et al. A complex microbiota from snowball Earth times: Microfossils from the Neoproterozoic Kingston Peak Formation, Death Valley, USA , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[75] T. Cavalier-smith,et al. Diversification of a Chimaeric Algal Group, the Chlorarachniophytes: Phylogeny of Nuclear and Nucleomorph Small-Subunit rRNA Genes , 1999 .
[76] A. Simpson,et al. Retortamonad flagellates are closely related to diplomonads--implications for the history of mitochondrial function in eukaryote evolution. , 2002, Molecular biology and evolution.
[77] T. Cavalier-smith,et al. Chloroplast Evolution: Secondary Symbiogenesis and Multiple Losses , 2002, Current Biology.
[78] W. Doolittle,et al. A kingdom-level phylogeny of eukaryotes based on combined protein data. , 2000, Science.
[79] D. Horner,et al. Unique phylogenetic relationships of glucokinase and glucosephosphate isomerase of the amitochondriate eukaryotes Giardia intestinalis, Spironucleus barkhanus and Trichomonas vaginalis. , 2001, Gene.
[80] A. Simpson,et al. How Oxymonads Lost Their Groove: An Ultrastructural Comparison of Monocercomonoides and Excavate Taxa , 2002, The Journal of eukaryotic microbiology.
[81] T. Cavalier-smith. The evolutionary origin and phylogeny of eukaryote flagella. , 1982, Symposia of the Society for Experimental Biology.
[82] T. Cavalier-smith. The Origin of Eukaryote and Archaebacterial Cells , 1987, Annals of the New York Academy of Sciences.
[83] D. Patterson,et al. The Diversity of Eukaryotes , 1999, The American Naturalist.