The excavate protozoan phyla Metamonada Grassé emend. (Anaeromonadea, Parabasalia, Carpediemonas, Eopharyngia) and Loukozoa emend. (Jakobea, Malawimonas): their evolutionary affinities and new higher taxa.

It is argued here that the anaerobic protozoan zooflagellate Parabasalia, Carpediemonas and Eopharyngia (diplomonads, enteromonads, retortamonads) constitute a holophyletic group, for which the existing name Trichozoa is adopted as a new subphylum. Ancestrally, Trichozoa probably had hydrogenosomes, stacked Golgi dictyosomes, three anterior centrioles and one posterior centriole: the typical tetrakont pattern. It is also argued that the closest relatives of Trichozoa are Anaeromonada (Trimastix, oxymonads), and the two groups are classified as subphyla of a revised phylum Metamonada. Returning Parabasalia and Anaeromonadea to Metamonada, as in Grassé's original classification, simplifies classification of the kingdom Protozoa by reducing the number of phyla within infrakingdom Excavata from five to four. Percolozoa (Heterolobosea plus Percolatea classis nov.) and Metamonada are probably both ancestrally quadriciliate with a kinetid of four centrioles attached to the nucleus; the few biciliates among them are probably secondarily derived. Metamonada ancestrally probably had two divergent centriole pairs, whereas, in Percolozoa, all four centrioles are parallel. It is suggested that Discicristata (Percolozoa, Euglenozoa) are holophyletic, ancestrally with two parallel centrioles. In the phylum Loukozoa, Malawimonadea classis nov. is established for Malawimonas (with a new family and order also) and Diphyllatea classis nov., for Diphylleida (Diphylleia, Collodictyon), is transferred back to Apusozoa. A new class, order and family are established for the anaerobic, biciliate, tricentriolar Carpediemonas, transferring it from Loukozoa to Trichozoa because of its triply flanged cilia; like Retortamonas, it may be secondarily biciliate--its unique combination of putative hydrogenosomes and flanged cilia agree with molecular evidence that Carpediemonas is sister to Eopharyngia, diverging before their ancestor lost hydrogenosomes and acquired a cytopharynx. Removal of anaeromonads and Carpediemonas makes Loukozoa more homogeneous, being basically biciliate, aerobic and free-living, in contrast to Metamonada. A new taxon-rich rRNA tree supports holophyly of Discicristata and Trichozoa strongly, holophyly of Metamonada and Excavata and paraphyly of Loukozoa weakly. Mitochondria were probably transformed into hydrogenosomes independently in the ancestors of lyromonad Percolozoa and Metamonada and further reduced in the ancestral eopharyngian. Evidence is briefly discussed that Metamonada and all other excavates share a photosynthetic ancestry with Euglenozoa and are secondarily non-photosynthetic, as predicted by the cabozoan hypothesis for a single secondary symbiogenetic acquisition of green algal plastids by the last common ancestor of Euglenozoa and Cercozoa. Excavata plus core Rhizaria (Cercozoa, Retaria) probably form an ancestrally photophagotrophic clade. The origin from a benthic loukozoan ancestor of the characteristic cellular features of Percolozoa and Euglenozoa through divergent adaptations for feeding on or close to surfaces is also discussed.

[1]  T. Cavalier-smith,et al.  Eukaryote kingdoms: seven or nine? , 1981, Bio Systems.

[2]  T. Fenchel,et al.  Percolomonas cosmopolitus (Ruinen) n.gen., a new type of filter feeding flagellate from marine plankton , 1986, Journal of the Marine Biological Association of the United Kingdom.

[3]  Terry Gaasterland,et al.  The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[4]  G. Brugerolle,et al.  Ultrastructure of Trimastix convexa hollande, an amitochondriate anaerobic flagellate with a previously undescribed organization , 1997 .

[5]  David J. Patterson,et al.  The ultrastructure of Carpediemonas membranifera (Eukaryota) with reference to the “excavate hypothesis” , 1999 .

[6]  G. Wu,et al.  Evolutionary relationships of the glucokinase from the amitochondriate protist, Trichomonas vaginalis. , 2001, Gene.

[7]  N. Iversen,et al.  Microbial diversity and activity in a Danish Fjord with anoxic deep water , 1995 .

[8]  T. Cavalier-smith,et al.  Molecular phylogeny of the free-living archezoanTrepomonas agilis and the nature of the first eukaryote , 1996, Journal of Molecular Evolution.

[9]  A. Simpson,et al.  On Core Jakobids and Excavate Taxa: The Ultrastructure of Jakoba incarcerata , 2001, The Journal of eukaryotic microbiology.

[10]  T. Cavalier-smith,et al.  Phylogeny of Choanozoa, Apusozoa, and Other Protozoa and Early Eukaryote Megaevolution , 2003, Journal of Molecular Evolution.

[11]  T. Cavalier-smith,et al.  A revised six‐kingdom system of life , 1998, Biological reviews of the Cambridge Philosophical Society.

[12]  H. Kirby Flagellate and host relationships of trichomonad flagellates. , 1947, The Journal of parasitology.

[13]  W. Doolittle,et al.  Molecular Phylogeny of Three Oxymonad Genera: Pyrsonympha, Dinenympha and Oxymonas , 2003, The Journal of eukaryotic microbiology.

[14]  C. O'kelly,et al.  Ultrastructure of Trimastix pyriformis (Klebs) Bernard et al.: similarities of Trimastix species with retortamonad and jakobid flagellates. , 1999, Protist.

[15]  I. Busse,et al.  Phylogenetic position of Rhynchopus sp. and Diplonema ambulator as indicated by analyses of euglenozoan small subunit ribosomal DNA. , 2002, Gene.

[16]  J. Corliss An interim utilitarian [user-friendly] hierarchical classification and characterization of the protists , 1994 .

[17]  D. Horner,et al.  Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles , 2002, The EMBO journal.

[18]  W. Doolittle,et al.  Evidence that eukaryotic triosephosphate isomerase is of alpha-proteobacterial origin. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[19]  T. Embley,et al.  Early branching eukaryotes? , 1998, Current opinion in genetics & development.

[20]  T. Cavalier-smith,et al.  The root of the eukaryote tree pinpointed , 2003, Current Biology.

[21]  Charles F. Delwiche,et al.  Tracing the Thread of Plastid Diversity through the Tapestry of Life , 1999, The American Naturalist.

[22]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[23]  I. Bolívar,et al.  SSU rRNA-based phylogenetic position of the genera Amoeba and Chaos (Lobosea, Gymnamoebia): the origin of gymnamoebae revisited. , 2001, Molecular biology and evolution.

[24]  Andrew J. Roger,et al.  A Cyanobacterial Gene in Nonphotosynthetic Protists—An Early Chloroplast Acquisition in Eukaryotes? , 2002, Current Biology.

[25]  J. Corliss The kingdom Protista and its 45 phyla. , 1984, Bio Systems.

[26]  R. Blanton,et al.  The heterolobosea (Sarcodina: Rhizopoda), a new class uniting the Schizopyrenida and the Acrasidae (Acrasida) , 1985 .

[27]  T. Cavalier-smith A 6-Klngdom Classification And A Unified Phylogeny , 1983 .

[28]  D. Horner,et al.  Chaperonin 60 phylogeny provides further evidence for secondary loss of mitochondria among putative early-branching eukaryotes. , 2001, Molecular biology and evolution.

[29]  Andrew J. Roger,et al.  Reconstructing Early Events in Eukaryotic Evolution , 1999, The American Naturalist.

[30]  G. B. Bouck The Biology of Free‐Living Heterotrophic Flagellates. , 1993 .

[31]  T. Cavalier-smith,et al.  Molecular Phylogeny of Centrohelid Heliozoa, a Novel Lineage of Bikont Eukaryotes That Arose by Ciliary Loss , 2003, Journal of Molecular Evolution.

[32]  J. Tachezy,et al.  Mitochondrial type iron-sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. , 2001, Molecular biology and evolution.

[33]  T. Cavalier-smith,et al.  Rooting the Eukaryote Tree by Using a Derived Gene Fusion , 2002, Science.

[34]  M. Sogin,et al.  Giardia lamblia expresses a proteobacterial-like DnaK homolog. , 2001, Molecular biology and evolution.

[35]  M. Flavin,et al.  Reclinomonas americana N. G., N. Sp., a New Freshwater Heterotrophic Flagellate , 1993, The Journal of eukaryotic microbiology.

[36]  T. Cavalier-smith Principles of Protein and Lipid Targeting in Secondary Symbiogenesis: Euglenoid, Dinoflagellate, and Sporozoan Plastid Origins and the Eukaryote Family Tree 1 , 2 , 1999, The Journal of eukaryotic microbiology.

[37]  P. J. Johnson,et al.  Origins of hydrogenosomes and mitochondria: evolution and organelle biogenesis. , 2000, Current opinion in microbiology.

[38]  T. Cavalier-smith,et al.  The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. , 2002, International journal of systematic and evolutionary microbiology.

[39]  B. Lang,et al.  The Closest Unicellular Relatives of Animals , 2002, Current Biology.

[40]  M. Sogin,et al.  New Insights into the Phylogeny of Trichomonads Inferred from Small Subunit rRNA Sequences. , 1998, Protist.

[41]  M. Sogin,et al.  Phylogenetic Position of the Trichomonad Parasite of Turkeys, Histomonas meleagridis (Smith) Tyzzer, Inferred from Small Subunit rRNA Sequence1 , 2001, The Journal of eukaryotic microbiology.

[42]  H. Phillipe The molecular phylogeny of eukaryota: solid facts and uncertainties , 1998 .

[43]  N. D. Levine,et al.  A REVISED CLASSIFICATION OF THE PHYLUM PROTOZOA. , 1964, The Journal of protozoology.

[44]  C. O'kelly,et al.  Malawimonas jakobiformis n. gen., n. sp. (Malawimonadidae n. fam.): A Jakoba‐like Heterotrophic Nanoflagellate with Discoidal Mitochondrial Cristae , 1999 .

[45]  W. Doolittle,et al.  The chaperonin genes of jakobid and jakobid-like flagellates: implications for eukaryotic evolution. , 2002, Molecular biology and evolution.

[46]  Phylogenetic position of the Sphaeropleaceae (Chlorophyta) , 2002, Plant Systematics and Evolution.

[47]  S. P. Gibbs,et al.  The chloroplasts of Euglena may have evolved from symbiotic green algae , 1978 .

[48]  H. Philippe,et al.  Collodictyon triciliatum and Diphylleia rotans (=Aulacomonas submarina) form a new family of flagellates (Collodictyonidae) with tubular mitochondrial cristae that is phylogenetically distant from other flagellate groups. , 2002, Protist.

[49]  M. Sogin,et al.  A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Detlef D. Leipe,et al.  Evolutionary history of "early-diverging" eukaryotes: the excavate taxon Carpediemonas is a close relative of Giardia. , 2002, Molecular biology and evolution.

[51]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[52]  Hervé Philippe,et al.  Early–branching or fast–evolving eukaryotes? An answer based on slowly evolving positions , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[53]  T. Cavalier-smith,et al.  Kingdom protozoa and its 18 phyla. , 1993, Microbiological reviews.

[54]  A. Simpson,et al.  The ultrastructure of Trimastix marina Kent 1880 (Eukaryota), an excavate flagellate , 2000 .

[55]  F. G. Wallace,et al.  A newly revised classification of the protozoa. , 1980, The Journal of protozoology.

[56]  T. Cavalier-smith,et al.  Phylogenetic Analysis of Eukaryotes Using Heat-Shock Protein Hsp90 , 2003, Journal of Molecular Evolution.

[57]  T. Cavalier-smith,et al.  Phylogeny and classification of phylum Cercozoa (Protozoa). , 2003, Protist.

[58]  T. Cavalier-smith The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. , 2002, International journal of systematic and evolutionary microbiology.

[59]  A. Simpson,et al.  An ultrastructural study of a free-living retortamonad, Chilomastix cuspidata (Larsen & Patterson, 1990) n. comb. (Retortamonadida, Protista) , 1997 .

[60]  M. A. Farmer Ultrastructure of Ditrichomonas honigbergii N. G., N. Sp. (Parabasalia) and Its Relationship to Amitochondrial Protists , 1993 .

[61]  T. Cavalier-smith Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[62]  R. Barnes,et al.  A Synoptic Classification of Living Organisms. , 1984 .

[63]  M. Sogin,et al.  Evolutionary relationships among "jakobid" flagellates as indicated by alpha- and beta-tubulin phylogenies. , 2001, Molecular biology and evolution.

[64]  T. Cavalier-smith Amoeboflagellates and mitochondrial cristae in eukaryote evolution: megasystematics of the new protozoan subkingdoms eozoa and neozoa , 1997 .

[65]  A. Knoll Learning to tell Neoproterozoic time. , 2000, Precambrian research.

[66]  A. Simpson,et al.  Oxymonads are closely related to the excavate taxon Trimastix. , 2001, Molecular biology and evolution.

[67]  C. O'kelly The Jakobid Flagellates: Structural Features of Jakoba, Reclinomonas and Histiona and Implications for the Early Diversification of Eukaryotes , 1993 .

[68]  M. Miles,et al.  An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. , 2002, Molecular biology and evolution.

[69]  A. Simpson The identity and composition of the Euglenozoa , 1997 .

[70]  A. Roger,et al.  The First Sexual Lineage and the Relevance of Facultative Sex , 1999, Journal of Molecular Evolution.

[71]  Detlef D. Leipe,et al.  Small subunit ribosomal RNA+ of Hexamita inflata and the quest for the first branch in the eukaryotic tree. , 1993, Molecular and biochemical parasitology.

[72]  T. Cavalier-smith,et al.  The Simultaneous Symbiotic Origin of Mitochondria, Chloroplasts, and Microbodies , 1987, Annals of the New York Academy of Sciences.

[73]  D. Patterson The evolution of protozoa. , 1988, Memorias do Instituto Oswaldo Cruz.

[74]  Frank A Corsetti,et al.  A complex microbiota from snowball Earth times: Microfossils from the Neoproterozoic Kingston Peak Formation, Death Valley, USA , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[75]  T. Cavalier-smith,et al.  Diversification of a Chimaeric Algal Group, the Chlorarachniophytes: Phylogeny of Nuclear and Nucleomorph Small-Subunit rRNA Genes , 1999 .

[76]  A. Simpson,et al.  Retortamonad flagellates are closely related to diplomonads--implications for the history of mitochondrial function in eukaryote evolution. , 2002, Molecular biology and evolution.

[77]  T. Cavalier-smith,et al.  Chloroplast Evolution: Secondary Symbiogenesis and Multiple Losses , 2002, Current Biology.

[78]  W. Doolittle,et al.  A kingdom-level phylogeny of eukaryotes based on combined protein data. , 2000, Science.

[79]  D. Horner,et al.  Unique phylogenetic relationships of glucokinase and glucosephosphate isomerase of the amitochondriate eukaryotes Giardia intestinalis, Spironucleus barkhanus and Trichomonas vaginalis. , 2001, Gene.

[80]  A. Simpson,et al.  How Oxymonads Lost Their Groove: An Ultrastructural Comparison of Monocercomonoides and Excavate Taxa , 2002, The Journal of eukaryotic microbiology.

[81]  T. Cavalier-smith The evolutionary origin and phylogeny of eukaryote flagella. , 1982, Symposia of the Society for Experimental Biology.

[82]  T. Cavalier-smith The Origin of Eukaryote and Archaebacterial Cells , 1987, Annals of the New York Academy of Sciences.

[83]  D. Patterson,et al.  The Diversity of Eukaryotes , 1999, The American Naturalist.