Nanostructured Germanium Anode Materials for Advanced Rechargeable Batteries

In recent decades, Germanium (Ge) has been supposed to be the greatest potential candidate for new‐type composite electrodes to replace carbonous anodes for lithium‐ion batteries electrochemical and other energy storage devices, due to their excellent capacity properties and potential applications in rechargeable high‐performance batteries. What's more, all types of low‐dimensional Ge‐based nanomaterias, including nanowires, nanobelts, nanoparticles and nanotubes, have been explored for design and applications, owing to the superior physical and chemical characteristics that result from their geometric construction and low‐dimension. Recently, Ge‐based nanomaterials have been highlighted by large numbers of scientists and engineers. This review is focusing upon the advanced high‐performance rechargeable batteries (Lithium‐ion batteries, Sodium‐ion batteries and Magnesium‐ion batteries) with Ge‐based nanomaterials during past few decades.

[1]  Sang Bok Lee,et al.  Mapping the Challenges of Magnesium Battery. , 2016, The journal of physical chemistry letters.

[2]  K. Bao,et al.  Chemical synthesis of germanium nanoparticles with uniform size as anode materials for lithium ion batteries. , 2016, Dalton transactions.

[3]  Zheng Jiang,et al.  Recent Advances in Visible-Light-Driven Photoelectrochemical Water Splitting: Catalyst Nanostructures and Reaction Systems , 2015, Nano-Micro Letters.

[4]  G. Diao,et al.  Fe3O4-based core/shell nanocomposites for high-performance electrochemical supercapacitors , 2016, Journal of Materials Science.

[5]  H. Pang,et al.  Core–shell Co11(HPO3)8(OH)6–Co3O4 hybrids for high-performance flexible all-solid-state asymmetric supercapacitors , 2015 .

[6]  Xiaoshuang Shen,et al.  One-pot construction of three dimensional CoMoO4/Co3O4 hybrid nanostructures and their application in supercapacitors , 2015 .

[7]  Jie Han,et al.  TiO2/NiO hybrid shells: p–n junction photocatalysts with enhanced activity under visible light , 2015 .

[8]  M. Li,et al.  Highly stable GeOx@C core-shell fibrous anodes for improved capacity in lithium-ion batteries , 2015 .

[9]  Jie Zhou,et al.  Cu3Si@Si core-shell nanoparticles synthesized using a solid-state reaction and their performance as anode materials for lithium ion batteries. , 2015, Nanoscale.

[10]  T. Hang,et al.  High-performance Si-based 3D Cu nanostructured electrode assembly for rechargeable lithium batteries , 2015 .

[11]  Yitai Qian,et al.  Honeycomb-like Macro-Germanium as High-Capacity Anodes for Lithium-Ion Batteries with Good Cycling and Rate Performance , 2015 .

[12]  Hua Zhang,et al.  Two-dimensional transition metal dichalcogenide nanosheet-based composites. , 2015, Chemical Society reviews.

[13]  L. Monconduit,et al.  Synergistic Effects of Ge and Si on the Performances and Mechanism of the GexSi1–x Electrodes for Li Ion Batteries , 2015 .

[14]  Yitai Qian,et al.  Nanoporous germanium as high-capacity lithium-ion battery anode , 2015 .

[15]  Xiaogang Zhang,et al.  Titanium Dioxide/Germanium Core–Shell Nanorod Arrays Grown on Carbon Textiles as Flexible Electrodes for High Density Lithium‐Ion Batteries , 2015 .

[16]  Yitai Qian,et al.  A synchronous approach for facile production of Ge-carbon hybrid nanoparticles for high-performance lithium batteries. , 2015, Chemical communications.

[17]  Min Gyu Kim,et al.  Cost-effective scalable synthesis of mesoporous germanium particles via a redox-transmetalation reaction for high-performance energy storage devices. , 2015, ACS nano.

[18]  S. Dou,et al.  Electrospinning of crystalline MoO3@C nanofibers for high-rate lithium storage , 2015 .

[19]  H. Le,et al.  Conducting additive-free amorphous GeO2/C composite as a high capacity and long-term stability anode for lithium ion batteries. , 2015, Nanoscale.

[20]  F. Endres,et al.  Preparation of Ge nanotube arrays from an ionic liquid for lithium ion battery anodes with improved cycling stability. , 2015, Chemical communications.

[21]  P. Zhu,et al.  Effects of fluorine on the structure of fluorohydroxyapatite: a study by XRD, solid-state NMR and Raman spectroscopy. , 2015, Journal of materials chemistry. B.

[22]  Bin Zhao,et al.  Facile Synthesis of Hematite Quantum‐Dot/Functionalized Graphene‐Sheet Composites as Advanced Anode Materials for Asymmetric Supercapacitors , 2015 .

[23]  Xiaogang Zhang,et al.  Ge–graphene–carbon nanotube composite anode for high performance lithium-ion batteries , 2015 .

[24]  Wei Wei,et al.  Facile one-pot method synthesis CNT–GeO2 nanocomposite for high performance Li ion battery anode material , 2015 .

[25]  Xiaoqing Shi,et al.  Hierarchical heterostructures of Ag nanoparticles decorated MnO2 nanowires as promising electrodes for supercapacitors , 2015 .

[26]  Ji Liang,et al.  A general strategy for the preparation of aligned multiwalled carbon nanotube/inorganic nanocomposites and aligned nanostructures , 2015 .

[27]  Wen Zhu,et al.  Photogenerated electron reservoir in hetero-p–n CuO–ZnO nanocomposite device for visible-light-driven photocatalytic reduction of aqueous Cr(VI) , 2015 .

[28]  Nikhil V. Medhekar,et al.  Ab initio characterization of layered MoS2 as anode for sodium-ion batteries , 2014 .

[29]  D. He,et al.  Germanium anode with lithiated-copper-oxide nanorods as an electronic-conductor for high-performance lithium-ion batteries , 2014 .

[30]  J. Bao,et al.  Ge Nanoparticles Encapsulated in Nitrogen-Doped Reduced Graphene Oxide as an Advanced Anode Material for Lithium-Ion Batteries , 2014 .

[31]  G. Hwang,et al.  On the origin of the significant difference in lithiation behavior between silicon and germanium , 2014 .

[32]  Ying Xiao,et al.  Freeze-drying-assisted synthesis of hierarchically porous carbon/germanium hybrid for high-efficiency lithium-ion batteries. , 2014, Chemistry, an Asian journal.

[33]  Quasi-perpetual discharge behaviour in p-type Ge-air batteries. , 2014, Physical chemistry chemical physics : PCCP.

[34]  M. Winter,et al.  Reversible Storage of Lithium in Three-Dimensional Macroporous Germanium , 2014 .

[35]  Xiaomei Ma,et al.  A facile synthesis of a novel mesoporous Ge@C sphere anode with stable and high capacity for lithium ion batteries , 2014 .

[36]  D. Wexler,et al.  Novel Germanium/Polypyrrole Composite for High Power Lithium-ion Batteries , 2014, Scientific Reports.

[37]  Shinichi Komaba,et al.  Negative electrodes for Na-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[38]  D. Peng,et al.  High performance of Ge@C nanocables as the anode for lithium ion batteries , 2014 .

[39]  Ya Zhang,et al.  Synthesis of novel yttrium-doped graphene oxide nanocomposite for dye removal , 2014 .

[40]  Chao Gao,et al.  Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics , 2014, Nature Communications.

[41]  Huolin L. Xin,et al.  Recent Progress on Mesoporous Carbon Materials for Advanced Energy Conversion and Storage , 2014 .

[42]  Nanosized Ge@CNF, Ge@C@CNF and Ge@CNF@C composites via chemical vapour deposition method for use in advanced lithium-ion batteries , 2014 .

[43]  Sulin Zhang,et al.  Germanium-Based Electrode Materials for Lithium-Ion Batteries , 2014 .

[44]  Yan Yu,et al.  Germanium nanoparticles encapsulated in flexible carbon nanofibers as self-supported electrodes for high performance lithium-ion batteries. , 2014, Nanoscale.

[45]  T. Baron,et al.  Growth strategies to control tapering in Ge nanowires , 2014 .

[46]  D. He,et al.  High areal capacity Li ion battery anode based on thick mesoporous Co3O4 nanosheet networks , 2014 .

[47]  Hsing-Yu Tuan,et al.  Scalable Solution-Grown High-Germanium-Nanoparticle-Loading Graphene Nanocomposites as High-Performance Lithium-Ion Battery Electrodes: An Example of a Graphene-Based Platform toward Practical Full-Cell Applications , 2014 .

[48]  Gleb Yushin,et al.  High‐Capacity Anode Materials for Lithium‐Ion Batteries: Choice of Elements and Structures for Active Particles , 2014 .

[49]  K. Ryan,et al.  High-performance germanium nanowire-based lithium-ion battery anodes extending over 1000 cycles through in situ formation of a continuous porous network. , 2014, Nano letters.

[50]  R. Goldman,et al.  Room-temperature epitaxial electrodeposition of single-crystalline germanium nanowires at the wafer scale from an aqueous solution. , 2014, Nano letters.

[51]  C. Fisher,et al.  Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. , 2014, Chemical Society reviews.

[52]  Xiaogang Zhang,et al.  High performance three-dimensional Ge/cyclized-polyacrylonitrile thin film anodes prepared by RF magnetron sputtering for lithium ion batteries , 2014, Journal of Materials Science.

[53]  Y. Li,et al.  3D ordered macroporous germanium fabricated by electrodeposition from an ionic liquid and its lithium storage properties , 2013 .

[54]  D. Shi,et al.  A unique sandwich-structured C/Ge/graphene nanocomposite as an anode material for high power lithium ion batteries , 2013 .

[55]  Oliver G. Schmidt,et al.  Strain‐Driven Formation of Multilayer Graphene/GeO2 Tubular Nanostructures as High‐Capacity and Very Long‐Life Anodes for Lithium‐Ion Batteries , 2013 .

[56]  Nicholas C. Davy,et al.  A high-rate germanium-particle slurry cast Li-ion anode with high Coulombic efficiency and long cycle life , 2013 .

[57]  Y. Cho,et al.  Tetragonal phase germanium nanocrystals in lithium ion batteries. , 2013, ACS nano.

[58]  Adam Heller,et al.  Nanocolumnar Germanium Thin Films as a High-Rate Sodium-Ion Battery Anode Material , 2013 .

[59]  Lin Guo,et al.  One‐Step In Situ Synthesis of GeO2/Graphene Composites Anode for High‐Performance Li‐Ion Batteries , 2013 .

[60]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[61]  Stefan A Maier,et al.  Two-dimensional crystals: managing light for optoelectronics. , 2013, ACS nano.

[62]  Shuru Chen,et al.  Amorphous Zn2GeO4 nanoparticles as anodes with high reversible capacity and long cycling life for Li-ion batteries , 2013 .

[63]  Gabriel M. Veith,et al.  Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory , 2013 .

[64]  Zaiping Guo,et al.  Synthesis of hollow GeO2 nanostructures, transformation into Ge@C, and lithium storage properties , 2013 .

[65]  Klaus Müllen,et al.  3D Graphene Foams Cross‐linked with Pre‐encapsulated Fe3O4 Nanospheres for Enhanced Lithium Storage , 2013, Advanced materials.

[66]  Jaephil Cho,et al.  Catalyst-free direct growth of a single to a few layers of graphene on a germanium nanowire for the anode material of a lithium battery. , 2013, Angewandte Chemie.

[67]  Yi Cui,et al.  Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes , 2013, Scientific Reports.

[68]  Y. Cho,et al.  Germanium sulfide(II and IV) nanoparticles for enhanced performance of lithium ion batteries. , 2013, Chemical communications.

[69]  S. Dou,et al.  Nanocomposites of silicon and carbon derived from coal tar pitch: Cheap anode materials for lithium-ion batteries with long cycle life and enhanced capacity , 2013 .

[70]  S. Manzhos,et al.  In search of high performance anode materials for Mg batteries: Computational studies of Mg in Ge, Si, and Sn , 2013, 1303.3416.

[71]  Dong Wang,et al.  Interface chemistry engineering for stable cycling of reduced GO/SnO2 nanocomposites for lithium ion battery. , 2013, Nano letters.

[72]  A. Heller,et al.  Storage of Lithium in Hydrothermally Synthesized GeO2 Nanoparticles. , 2013, The journal of physical chemistry letters.

[73]  Yang Liu,et al.  Tough germanium nanoparticles under electrochemical cycling. , 2013, ACS nano.

[74]  Dimitri D. Vaughn,et al.  Synthesis, properties and applications of colloidal germanium and germanium-based nanomaterials. , 2013, Chemical Society reviews.

[75]  Reginald E. Rogers,et al.  Balanced approach to safety of high capacity silicon–germanium–carbon nanotube free-standing lithium ion battery anodes , 2013 .

[76]  Yan Yu,et al.  Three‐Dimensional (3D) Bicontinuous Au/Amorphous‐Ge Thin Films as Fast and High‐Capacity Anodes for Lithium‐Ion Batteries , 2013 .

[77]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[78]  Z. Wen,et al.  Main Challenges for High Performance NAS Battery: Materials and Interfaces , 2013 .

[79]  Jaephil Cho,et al.  Catalytic role of Ge in highly reversible GeO2/Ge/C nanocomposite anode material for lithium batteries. , 2013, Nano letters.

[80]  Jens Leker,et al.  Current research trends and prospects among the various materials and designs used in lithium-based batteries , 2013, Journal of Applied Electrochemistry.

[81]  Guowang Diao,et al.  In situ synthesis of silver nanostructures on magnetic Fe3O4@C core–shell nanocomposites and their application in catalytic reduction reactions , 2013 .

[82]  Meihua Jin,et al.  Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes. , 2013, ACS nano.

[83]  Y. Cho,et al.  Photo-induced cation exchange reaction of germanium chalcogenide nanocrystals synthesized using gas-phase laser photolysis reaction. , 2013, Chemical communications.

[84]  Fuminori Mizuno,et al.  A high energy-density tin anode for rechargeable magnesium-ion batteries. , 2013, Chemical communications.

[85]  Guo Hong,et al.  Germanium–graphene composite anode for high-energy lithium batteries with long cycle life , 2013 .

[86]  L. Ellis,et al.  Sodium Insertion into Tin Cobalt Carbon Active/Inactive Nanocomposite , 2013 .

[87]  Xiaoya Hu,et al.  Capillary column coated with graphene oxide as stationary phase for gas chromatography. , 2012, Analytica chimica acta.

[88]  Y. Cho,et al.  High-Yield Gas-Phase Laser Photolysis Synthesis of Germanium Nanocrystals for High-Performance Photodetectors and Lithium Ion Batteries , 2012 .

[89]  Guoxiu Wang,et al.  Label-free impedimetric immunosensor for sensitive detection of 2,4-dichlorophenoxybutyric acid (2,4-DB) in soybean. , 2012, Talanta: The International Journal of Pure and Applied Analytical Chemistry.

[90]  Changwen Hu,et al.  Hierarchically porous germanium-modified carbon materials with enhanced lithium storage performance. , 2012, Nanoscale.

[91]  Xiaogang Han,et al.  Porous amorphous FePO4 nanoparticles connected by single-wall carbon nanotubes for sodium ion battery cathodes. , 2012, Nano letters.

[92]  Chun Li,et al.  Role of boundary layer diffusion in vapor deposition growth of chalcogenide nanosheets: the case of GeS. , 2012, ACS nano.

[93]  Zhenguo Yang,et al.  The effects of temperature on the electrochemical performance of sodium–nickel chloride batteries , 2012 .

[94]  Yuki Yamada,et al.  Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries , 2012 .

[95]  Young-Min Choi,et al.  A Ge inverse opal with porous walls as an anode for lithium ion batteries , 2012 .

[96]  Jianjun Li,et al.  Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. , 2012, Angewandte Chemie.

[97]  Ruigang Zhang,et al.  α-MnO2 as a cathode material for rechargeable Mg batteries , 2012 .

[98]  Qian Sun,et al.  NASICON-type Fe2(MoO4)3 thin film as cathode for rechargeable sodium ion battery , 2012 .

[99]  Yu‐Guo Guo,et al.  Anisotropic Photoresponse Properties of Single Micrometer‐Sized GeSe Nanosheet , 2012, Advanced materials.

[100]  B. Korgel,et al.  Solution-grown germanium nanowire anodes for lithium-ion batteries. , 2012, ACS applied materials & interfaces.

[101]  B. Korgel,et al.  Influences of gold, binder and electrolyte on silicon nanowire performance in Li-ion batteries , 2012 .

[102]  S. Maldonado,et al.  Template-free preparation of crystalline Ge nanowire film electrodes via an electrochemical liquid-liquid-solid process in water at ambient pressure and temperature for energy storage. , 2012, Nano letters.

[103]  Li Lu,et al.  Ultrafine LiMn2O4/carbon nanotube nanocomposite with excellent rate capability and cycling stability for lithium-ion batteries , 2012 .

[104]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[105]  Hongkyung Lee,et al.  Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries. , 2012, Chemical communications.

[106]  R. Guo,et al.  Carbon-nanoparticles encapsulated in hollow nickel oxides for supercapacitor application , 2012 .

[107]  Bei Wang,et al.  Solvothermal synthesis of CoS2–graphene nanocomposite material for high-performance supercapacitors , 2012 .

[108]  Xianglong Li,et al.  Graphene‐Confined Sn Nanosheets with Enhanced Lithium Storage Capability , 2012, Advanced materials.

[109]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[110]  John B Goodenough,et al.  Prussian blue: a new framework of electrode materials for sodium batteries. , 2012, Chemical communications.

[111]  Jaephil Cho,et al.  Self-assembled germanium/carbon nanostructures as high-power anode material for the lithium-ion battery. , 2012, Angewandte Chemie.

[112]  H. Hng,et al.  Germanium nanowires-based carbon composite as anodes for lithium-ion batteries , 2012 .

[113]  Hui Wu,et al.  A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. , 2012, Nano letters.

[114]  K. Ryan,et al.  Size controlled growth of germanium nanorods and nanowires by solution pyrolysis directly on a substrate. , 2012, Chemical communications.

[115]  Haoshen Zhou,et al.  Hierarchical micro/nano porous silicon Li-ion battery anodes. , 2012, Chemical communications.

[116]  J. Baek,et al.  Carbon nanomaterials for advanced energy conversion and storage. , 2012, Small.

[117]  Keith J Stevenson,et al.  Electrochemical deposition of germanium sulfide from room-temperature ionic liquids and subsequent Ag doping in an aqueous solution. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[118]  Haitao Jiang,et al.  Influence of surfactant CTAB on the electrochemical performance of manganese dioxide used as supercapacitor electrode material , 2012 .

[119]  Timothy S. Arthur,et al.  Electrodeposited Bi, Sb and Bi1-xSbx alloys as anodes for Mg-ion batteries , 2012 .

[120]  Li Lu,et al.  Influence of grain size on lithium storage performance of germanium oxide films , 2012 .

[121]  Yi Cui,et al.  Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage. , 2012, ACS nano.

[122]  Yu‐Guo Guo,et al.  Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks. , 2012, Journal of the American Chemical Society.

[123]  F. Endres,et al.  Free-standing aluminium nanowire architectures made in an ionic liquid. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[124]  Yong Min Lee,et al.  Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. , 2012, Nano letters.

[125]  J. Dahn,et al.  NaCrO2 is a Fundamentally Safe Positive Electrode Material for Sodium-Ion Batteries with Liquid Electrolytes , 2012 .

[126]  Soo Yeon Lim,et al.  Electrochemical and Thermal Properties of NASICON Structured Na3V2(PO4)3 as a Sodium Rechargeable Battery Cathode: A Combined Experimental and Theoretical Study , 2012 .

[127]  Donghan Kim,et al.  Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application , 2012 .

[128]  Huilin Pan,et al.  Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries , 2012 .

[129]  Jiawei Wang,et al.  Synthesis of the LiFePO4/C core–shell nanocomposite using a nano-FePO4/polythiophene as an iron source , 2012 .

[130]  Deren Yang,et al.  Cu–Ge core–shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries , 2012 .

[131]  Jinsheng Cheng,et al.  Facile synthesis of germanium–graphene nanocomposites and their application as anode materials for lithium ion batteries , 2012 .

[132]  Xiqian Yu,et al.  Amorphous hierarchical porous GeO(x) as high-capacity anodes for Li ion batteries with very long cycling life. , 2011, Journal of the American Chemical Society.

[133]  Brandon R. Long,et al.  The First-Cycle Electrochemical Lithiation of Crystalline Ge: Dopant and Orientation Dependence and Comparison with Si , 2011 .

[134]  D. Wexler,et al.  Tin/polypyrrole composite anode using sodium carboxymethyl cellulose binder for lithium-ion batteries. , 2011, Dalton transactions.

[135]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[136]  Yi Cui,et al.  Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. , 2011, Nano letters.

[137]  J. Veinot,et al.  Size-controlled template synthesis of metal-free germanium nanowires , 2011 .

[138]  K. Ryan,et al.  High Density Germanium Nanowire Growth Directly from Copper Foil by Self-Induced Solid Seeding , 2011 .

[139]  Meilin Liu,et al.  Germanium nanotubes prepared by using the Kirkendall effect as anodes for high-rate lithium batteries. , 2011, Angewandte Chemie.

[140]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[141]  S. T. Picraux,et al.  Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: an in situ transmission electron microscopy study. , 2011, Nano letters.

[142]  T. Doi,et al.  Potential positive electrodes for high-voltage magnesium-ion batteries , 2011 .

[143]  Dong‐Wan Kim,et al.  Sn-induced low-temperature growth of Ge nanowire electrodes with a large lithium storage capacity. , 2011, Nanoscale.

[144]  Zhong Lin Wang,et al.  Wafer-scale high-throughput ordered arrays of Si and coaxial Si/Si(1-x)Ge(x) wires: fabrication, characterization, and photovoltaic application. , 2011, ACS nano.

[145]  Jian Yu Huang,et al.  Multiple-stripe lithiation mechanism of individual SnO2 nanowires in a flooding geometry. , 2011, Physical review letters.

[146]  T. Zhu,et al.  Atomistic mechanisms of lithium insertion in amorphous silicon , 2011 .

[147]  M. Morris,et al.  Organic Functionalization of Germanium Nanowires using Arenediazonium Salts , 2011 .

[148]  Dimitri D. Vaughn,et al.  Single-crystal colloidal nanosheets of GeS and GeSe. , 2010, Journal of the American Chemical Society.

[149]  P. Ajayan,et al.  Synthesis of nitrogen-doped graphene films for lithium battery application. , 2010, ACS nano.

[150]  P. Chu,et al.  Group IV nanoparticles: synthesis, properties, and biological applications. , 2010, Small.

[151]  Reginald E. Rogers,et al.  Enhanced capacity and rate capability of carbon nanotube based anodes with titanium contacts for lithium ion batteries. , 2010, ACS nano.

[152]  S. Barth,et al.  Seedless growth of sub-10 nm germanium nanowires. , 2010, Journal of the American Chemical Society.

[153]  Gerbrand Ceder,et al.  Opportunities and challenges for first-principles materials design and applications to Li battery materials , 2010 .

[154]  B. Landi,et al.  High energy density lithium-ion batteries with carbon nanotube anodes , 2010 .

[155]  B. Landi,et al.  Germanium-single-wall carbon nanotube anodes for lithium ion batteries , 2010 .

[156]  Philippe Moreau,et al.  Structure and Stability of Sodium Intercalated Phases in Olivine FePO4 , 2010 .

[157]  Chunsheng Wang,et al.  A Porous Silicon-Carbon Anode with High Overall Capacity on Carbon Fiber Current Collector , 2010 .

[158]  Jaephil Cho,et al.  Porous Si anode materials for lithium rechargeable batteries , 2010 .

[159]  Zhenguo Yang,et al.  Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives , 2010 .

[160]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[161]  J. Dahn,et al.  Tin‐based materials as negative electrodes for Li‐ion batteries: Combinatorial approaches and mechanical methods , 2010 .

[162]  N. Imanishi,et al.  Li-ion diffusion in amorphous Si films prepared by RF magnetron sputtering: A comparison of using liquid and polymer electrolytes , 2010 .

[163]  Yuping Wu,et al.  Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemical reaction , 2010 .

[164]  Jaephil Cho,et al.  Flexible Dimensional Control of High‐Capacity Li‐Ion‐Battery Anodes: From 0D Hollow to 3D Porous Germanium Nanoparticle Assemblies , 2010, Advanced materials.

[165]  Li Lu,et al.  NASICON-Structured LiGe2(PO4)3 with Improved Cyclability for High-Performance Lithium Batteries , 2009 .

[166]  B. Wei,et al.  In-situ formation of sandwiched structures of nanotube/CuxOy/Cu composites for lithium battery applications. , 2009, ACS nano.

[167]  Yan Yu,et al.  Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. , 2009, Angewandte Chemie.

[168]  Ryne P. Raffaelle,et al.  Carbon nanotubes for lithium ion batteries , 2009 .

[169]  G. Sumanasekera,et al.  Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. , 2009, Nano letters.

[170]  Jaephil Cho,et al.  Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material. , 2008, Nano letters.

[171]  G. Cui,et al.  A Germanium–Carbon Nanocomposite Material for Lithium Batteries , 2008 .

[172]  A. R. Ramos,et al.  Raman and XRD studies of Ge nanocrystals in alumina films grown by RF-magnetron sputtering , 2008 .

[173]  Steve W. Martin,et al.  Electrochemical behavior of Ge and GeX2 (X = O, S) glasses: Improved reversibility of the reaction of Li with Ge in a sulfide medium , 2008 .

[174]  Weiguo Song,et al.  Tin‐Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High‐Performance Anode Material in Lithium‐Ion Batteries , 2008 .

[175]  J. Tarascon,et al.  Electrochemical method for direct deposition of nanometric bismuth and its electrochemical properties vs Li , 2008 .

[176]  Peng Wang,et al.  High-resolution detection of Au catalyst atoms in Si nanowires. , 2008, Nature nanotechnology.

[177]  R. Schlögl,et al.  Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. , 2008, Angewandte Chemie.

[178]  M. Armand,et al.  Building better batteries , 2008, Nature.

[179]  Sergey Kafanov,et al.  Electronic transport in single molecule junctions: control of the molecule-electrode coupling through intramolecular tunneling barriers. , 2008, Nano letters.

[180]  Yi Cui,et al.  High capacity Li ion battery anodes using ge nanowires. , 2008, Nano letters.

[181]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[182]  Qiang Wang,et al.  In Situ Growth of Mesoporous SnO2 on Multiwalled Carbon Nanotubes: A Novel Composite with Porous‐Tube Structure as Anode for Lithium Batteries , 2007 .

[183]  Mark N. Obrovac,et al.  Alloy Design for Lithium-Ion Battery Anodes , 2007 .

[184]  Jaephil Cho,et al.  Sn(78)Ge(22)@carbon core-shell nanowires as fast and high-capacity lithium storage media. , 2007, Nano letters.

[185]  Bruno Scrosati,et al.  High‐Rate, Long‐Life Ni–Sn Nanostructured Electrodes for Lithium‐Ion Batteries , 2007 .

[186]  S. Kodambaka,et al.  Germanium Nanowire Growth Below the Eutectic Temperature , 2007, Science.

[187]  G. Cui,et al.  One-dimensional porous carbon/platinum composites for nanoscale electrodes. , 2007, Angewandte Chemie.

[188]  Jun Chen,et al.  Novel Nano-silicon / Polypyrrole Composites for Lithium Storage , 2007 .

[189]  Qinmin Pan,et al.  Covalent modification of natural graphite with lithium benzoate multilayers via diazonium chemistry and their application in lithium ion batteries , 2007 .

[190]  Jaephil Cho,et al.  Synthesis and Optimization of Nanoparticle Ge Confined in a Carbon Matrix for Lithium Battery Anode Material , 2007 .

[191]  Yong-Mook Kang,et al.  Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. , 2007, Angewandte Chemie.

[192]  Jing-ying Xie,et al.  Enhancing Electrochemical Performance of Silicon Film Anode by Vinylene Carbonate Electrolyte Additive , 2006 .

[193]  David Wexler,et al.  Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. , 2006, Angewandte Chemie.

[194]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[195]  Margit Zacharias,et al.  Semiconductor nanowires: from self-organization to patterned growth. , 2006, Small.

[196]  Chunjoong Kim,et al.  Electrochemical performance of amorphous-silicon thin films for lithium rechargeable batteries , 2006 .

[197]  R. M. Tromp,et al.  The influence of the surface migration of gold on the growth of silicon nanowires , 2006, Nature.

[198]  I. Sagnes,et al.  Designing novel organogermanium OMVPE precursors for high-purity germanium films , 2006 .

[199]  J. Boland,et al.  High density germanium nanowire assemblies: contact challenges and electrical characterization. , 2006, The journal of physical chemistry. B.

[200]  Jaephil Cho,et al.  Surface-stabilized amorphous germanium nanoparticles for lithium-storage material. , 2005, The journal of physical chemistry. B.

[201]  S. Dou,et al.  Study of silicon/polypyrrole composite as anode materials for Li-ion batteries , 2005 .

[202]  B. Korgel,et al.  Crystallography and surface faceting of germanium nanowires. , 2005, Small.

[203]  N. Machida,et al.  Preparation of Li4.4GexSi1−x alloys by mechanical milling process and their properties as anode materials in all-solid-state lithium batteries , 2004 .

[204]  Chemical routes to GeS2 and GeSe2 nanowires. , 2004, Chemical communications.

[205]  C. Arean,et al.  Electrochemical Reaction Between Lithium and β-Quartz GeO2 , 2004 .

[206]  Joshua E. Goldberger,et al.  SEMICONDUCTOR NANOWIRES AND NANOTUBES , 2004 .

[207]  D. Hewak,et al.  Deposition and characterization of germanium sulphide glass planar waveguides. , 2004, Optics express.

[208]  I. Honma,et al.  Lithium Storage in Ordered Mesoporous Carbon (CMK‐3) with High Reversible Specific Energy Capacity and Good Cycling Performance , 2003 .

[209]  Seung M. Oh,et al.  Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. , 2003, Journal of the American Chemical Society.

[210]  Heon-Jin Choi,et al.  Single-crystal gallium nitride nanotubes , 2003, Nature.

[211]  Doron Aurbach,et al.  Nonaqueous magnesium electrochemistry and its application in secondary batteries. , 2003, Chemical record.

[212]  Phaedon Avouris,et al.  Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts , 2003 .

[213]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[214]  Younan Xia,et al.  CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air , 2002 .

[215]  Younan Xia,et al.  Crystalline Silver Nanowires by Soft Solution Processing , 2002 .

[216]  M. Yoshio,et al.  Novel Anode Material for Lithium-ion Batteries: Carbon-Coated Silicon Prepared by Thermal Vapor Decomposition , 2001 .

[217]  D. Stevens,et al.  The Mechanisms of Lithium and Sodium Insertion in Carbon Materials , 2001 .

[218]  Charles M. Lieber,et al.  Synthetic Control of the Diameter and Length of Single Crystal Semiconductor Nanowires , 2001 .

[219]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[220]  R. Almeida,et al.  Preparation and Characterization of Germanium Sulfide Based Sol-Gel Planar Waveguides , 2000 .

[221]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[222]  Peidong Yang,et al.  Germanium Nanowire Growth via Simple Vapor Transport , 2000 .

[223]  Margret Wohlfahrt-Mehrens,et al.  A room temperature study of the binary lithium–silicon and the ternary lithium–chromium–silicon system for use in rechargeable lithium batteries , 1999 .

[224]  Jiangtao Hu,et al.  Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes , 1999 .

[225]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[226]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites , 1997 .

[227]  D. Kostic,et al.  The behaviour of sodium in Ge, Si and GaAs , 1986 .

[228]  R. Huggins,et al.  Behavior of Some Binary Lithium Alloys as Negative Electrodes in Organic Solvent‐Based Electrolytes , 1986 .