On application of 0s orbitals in SCF calculations
暂无分享,去创建一个
[1] H. Monkhorst,et al. Wave functions in momentum space. I. Iterative computation for the helium atom in Hartree–Fock approximation , 1981 .
[2] K. Szalewicz,et al. Symmetry-adapted double-perturbation analysis of intramolecular correlation effects in weak intermolecular interactions , 1979 .
[3] C. Roothaan,et al. Accurate and stable numerical Hartree–Fock calculations for atoms. I. The 1s2 ground state of H−, He, Li+, and Be++ , 1979 .
[4] J. Gázquez,et al. Piecewise polynomial electronic wavefunctions , 1977 .
[5] R. Raffenetti,et al. Even‐tempered atomic orbitals. II. Atomic SCF wavefunctions in terms of even‐tempered exponential bases , 1973 .
[6] G. Sperber. Analysis of reduced density matrices in the coordinate representation. II. The structure of closed‐shell atoms in the restricted Hartree–Fock approximation , 1971 .
[7] H. Silverstone,et al. Rational function approximation for atomic and molecular wave functions , 1969 .
[8] F. L. Pilar,et al. Approximate Hartree–Fock Energies of the 11S and 23S States of the Helium Atom Using Three‐Parameter Orbitals Generalized from Slater and Gaussian Functions , 1969 .
[9] R. Parr,et al. HULTHEN ORBITAL AND HULTHEN CORRELATION FACTOR FOR THE GROUND STATE OF HELIUMLIKE SYSTEMS. , 1966 .
[10] P. Robinson. Approximate Wavefunctions Containing ``0s'' Orbitals , 1966 .
[11] J. Zung,et al. Approximate Hartree—Fock Wavefunction for the Helium Atom , 1964 .
[12] A. Dalgarno,et al. The Hartree Energies of the Helium Sequence , 1961 .
[13] L. Green,et al. Effect on the Energy of Increased Flexibility in the Separable Factor of Hylleraas-Type Atomic Wave Functions from H - to O VII , 1958 .
[14] G. Kellner. Die Ionisierungsspannung des Heliums nach der Schrödingerschen Theorie , 1927 .