Dependent Tests Driven Filtering in Monte-Carlo Global Illumination

This paper presents a multi-phase algorithm to solve the global illumination problem. In the first phase dependent tests are applied, i.e. the random walks of different pixels are built from the same random numbers. The result of the first phase is used to identify homogeneous pixel groups in the image. The criterion of the formation of such groups is that averaging the color inside these groups should result in less error than handling the pixels independently. The second phase of the algorithm is a conventional random walk method that uses independent random samples in different pixels. The final result is calculated as the average of the results of the dependent tests and the lowpass filtered version of the independent tests. This low-pass filter averages the pixel values inside the homogenous groups. The algorithm takes advantage of the fact that the image can contain larger homogeneous regions that can be calculated from much less number of samples. Thus we can focus on those pixels where significant changes happen.

[1]  R. Redner,et al.  A note on the use of nonlinear filtering in computer graphics , 1990, IEEE Computer Graphics and Applications.

[2]  E. J. Stollnitz,et al.  Wavelet Radiance , 1994 .

[3]  Henrik Wann Jensen,et al.  Global Illumination using Photon Maps , 1996, Rendering Techniques.

[4]  A. Keller Hierarchical Monte Carlo image synthesis , 2001 .

[5]  Claude Puech,et al.  Radiosity and global illumination , 1994 .

[6]  Donald P. Greenberg,et al.  A radiosity method for non-diffuse environments , 1986, SIGGRAPH.

[7]  Karol Myszkowski,et al.  The Visible Differences Predictor: Applications to Global Illumination Problems , 1998, Rendering Techniques.

[8]  Werner Purgathofer,et al.  A statistical method for adaptive stochastic sampling , 1986, Comput. Graph..

[9]  Andrea Szalavetz,et al.  Hungarian Academy of Sciences , 1952, Nature.

[10]  Donald P. Greenberg,et al.  The hemi-cube: a radiosity solution for complex environments , 1985, SIGGRAPH.

[11]  Mateu Sbert,et al.  Hierarchical Monte Carlo Radiosity , 1998, Rendering Techniques.

[12]  Harold R. Zatz Galerkin radiosity: a higher order solution method for global illumination , 1993, SIGGRAPH.

[13]  Leonidas J. Guibas,et al.  Bidirectional Estimators for Light Transport , 1995 .

[14]  Henrik Wann Jensen,et al.  Adaptive Smpling and Bias Estimation in Path Tracing , 1997, Rendering Techniques.

[15]  Philipp Slusallek,et al.  Photo-Realistic Rendering - Recent Trends and Developments , 1997, Eurographics.

[16]  ´ Szirmay-KalosL,et al.  PHOTOREALISTIC IMAGE SYNTHESIS USING RAY-BUNDLES , 2000 .

[17]  J. Kohlas Die Monte Carlo Methode , 1971 .

[18]  Yves D. Willems,et al.  Adaptive Filtering for Progressive Monte Carlo Image Rendering , 2000, WSCG.

[19]  Holly E. Rushmeier,et al.  Energy preserving non-linear filters , 1994, SIGGRAPH.

[20]  George Drettakis,et al.  Efficient Glossy Global Illumination with Interactive Viewing , 1999, Comput. Graph. Forum.