The microwave cavity perturbation technique for contact-free and in situ electrical conductivity measurements in catalysis and materials science.
暂无分享,去创建一个
Robert Schlögl | Frank Rosowski | Maik Eichelbaum | Annette Trunschke | R. Schlögl | A. Trunschke | F. Rosowski | Reinhard Stösser | Andrey Karpov | Cornelia-Katharina Dobner | R. Stösser | M. Eichelbaum | Cornelia-Katharina Dobner | A. Karpov
[1] Ralf Moos,et al. Direct Catalyst Monitoring by Electrical Means: An Overview on Promising Novel Principles , 2009 .
[2] J. Herrmann,et al. ELECTRICAL PROPERTIES OF DOPED VANADIUM PHOSPHATE PHASES AND VPO CATALYSTSUSED IN THE PARTIAL OXIDATION OF N-BUTANE TO MALEIC ANHYDRIDE , 1994 .
[3] G. Hutchings. Vanadium phosphate: a new look at the active components of catalysts for the oxidation of butane to maleic anhydride , 2004 .
[4] J. Védrine. The Role of Redox, Acid-Base and Collective Properties and of Cristalline State of Heterogeneous Catalysts in the Selective Oxidation of Hydrocarbons , 2002 .
[5] G. Grüner,et al. Microwave cavity perturbation technique: Part II: Experimental scheme , 1993 .
[6] Michael E. Tobar,et al. Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures , 1999 .
[7] G. Schuit,et al. In Situ Measurements of the Electrical Conductivity of Bismuth Molybdate Catalysts in Operation for Oxidative Dehydrogenation of Butene , 1985 .
[8] G. Grüner,et al. Microwave cavity perturbation technique: Part I: Principles , 1993 .
[9] C. Munteanu,et al. Electrical conductivity of a MoVTeNbO catalyst in propene oxidation measured in operando conditions , 2010 .
[10] Michael E. Tobar,et al. Anisotropic complex permittivity measurements of mono-crystalline rutile between 10 and 300 K , 1998 .
[11] X. Verykios,et al. Effect of electronic properties of catalysts for the oxidative coupling of methane on their selectivity and activity , 1994 .
[12] R. Kawashima,et al. Electric properties near the first order phase transition points of rubidium nitrate crystal , 1986 .
[13] J. Sinkkonen. AC Properties of a Random Barrier Network , 1981, January 1.
[14] N. Alford,et al. Dielectric loss of oxide single crystals and polycrystalline analogues from 10 to 320 K , 2001 .
[15] A. Ovenston,et al. AC electrical characterization of heterogeneous catalysts , 1993 .
[16] J. Herrmann. The electronic factor and related redox processes in oxidation catalysis , 2006 .
[17] P. D. Oliveira,et al. Vanadium Phosphorus Oxide Catalyst Modified by Niobium Doping for Mild Oxidation of n-Butane to Maleic Anhydride , 2002 .
[18] D. Su,et al. In Situ Surface Analysis in Selective Oxidation Catalysis: n-Butane Conversion Over VPP , 2003 .
[19] Makoto Sato,et al. Relative permittivity and dielectric loss tangent of substrate materials for high-Tc superconducting film , 1991 .
[20] J. Hyde. A New Principle for Aqueous Sample Cells for EPR , 1972 .
[21] J. Herrmann,et al. In SituStudy of Redox and of p-Type Semiconducting Properties of Vanadyl Pyrophosphate and of V–P–O Catalysts during the Partial Oxidation ofn-Butane to Maleic Anhydride , 1997 .
[22] A. Brückner,et al. Spin exchange in solutions of TEMPOL in n-octanol and 1-methyl-3-octylimidazolium hexafluorophosphate in the temperature range from 300 to 500 K. , 2011, The journal of physical chemistry. A.
[23] C. P. Neo,et al. Microwave Electronics: Measurement and Materials Characterization , 2004 .
[24] O. Safonova,et al. Mechanism of the oxidation-reduction of the MoVSbNbO catalyst: in operando X-ray absorption spectroscopy and electrical conductivity measurements. , 2006, Journal of Physical Chemistry B.
[25] G. Grüner,et al. Microwave cavity perturbation technique: Part III: Applications , 1993 .
[26] Kazuo Suzuki,et al. Electric and Optical Properties Near the Successive Phase Transition Points of Rubidium Nitrate Crystal , 1985 .
[27] N. Mott,et al. Electronic Processes In Non-Crystalline Materials , 1940 .
[28] R. Grasselli. Genesis of site isolation and phase cooperation in selective oxidation catalysis , 2001 .
[29] J. Millet. Mechanism of first hydrogen abstraction from light alkanes on oxide catalysts , 2006 .
[30] L. Beneš,et al. Electrical-Transport Properties of Hydrated and Anhydrous Vanadyl Phosphate in the Temperature Range 20−200 °C , 1996 .
[31] A. K. Jonscher,et al. The ‘universal’ dielectric response , 1977, Nature.
[32] Ralf Riedel,et al. In situ and operando spectroscopy for assessing mechanisms of gas sensing. , 2007, Angewandte Chemie.
[33] Ralf Moos,et al. Catalyst State Observation via the Perturbation of a Microwave Cavity Resonator , 2008 .
[34] D. A. G. Bruggeman. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .
[35] Henny J. M. Bouwmeester,et al. Solid state aspects of oxidation catalysis , 2000 .
[36] R. Kawashima,et al. Temperature and frequency dependence of electric conductivity near the successive phase transition points of rubidium nitrate crystal , 1986 .
[37] G. Centi. Vanadyl Pyrophosphate - A Critical Overview , 1993 .