The effect of alkalinity on Ni O bond length in silicate glasses: Implications for Ni isotope geochemistry
暂无分享,去创建一个
E. Welter | S. Klemme | M. Wilke | E. Steenstra | M. Klaver | M. Borchert | J. Berndt
[1] T. Elliott,et al. Equilibrium olivine-melt Mg isotopic fractionation explains high δ26Mg values in arc lavas , 2022, Geochemical Perspectives Letters.
[2] D. Muir,et al. Empirical and Experimental Constraints on Fe-Ti Oxide-Melt Titanium Isotope Fractionation Factors , 2022, Goldschmidt2021 abstracts.
[3] D. Neuville,et al. Structural, redox and isotopic behaviors of iron in geological silicate glasses: a NRIXS study of Lamb-Mössbauer factors and force constants , 2022, Geochimica et Cosmochimica Acta.
[4] J. Harvey,et al. Heterogeneous nickel isotope compositions of the terrestrial mantle - Part 2: Mafic lithologies , 2021, Geochimica et Cosmochimica Acta.
[5] Laura A. Miller,et al. The coordination of Cr2+ in silicate glasses and implications for mineral-melt fractionation of Cr isotopes , 2021, Chemical Geology.
[6] F. Poitrasson,et al. First-principles calculation of iron and silicon isotope fractionation between Fe-bearing minerals at magmatic temperatures: The importance of second atomic neighbors , 2021, Geochimica et Cosmochimica Acta.
[7] H. Williams,et al. Iron isotopes trace primordial magma ocean cumulates melting in Earth’s upper mantle , 2021, Science Advances.
[8] P. Sprung,et al. The redox dependence of titanium isotope fractionation in synthetic Ti-rich lunar melts , 2021, Contributions to Mineralogy and Petrology.
[9] Shichun Huang,et al. Nickel isotopic evidence for late-stage accretion of Mercury-like differentiated planetary embryos , 2021, Nature communications.
[10] J. Harvey,et al. Heterogeneous nickel isotopic compositions in the terrestrial mantle – Part 1: Ultramafic lithologies , 2020, Geochimica et Cosmochimica Acta.
[11] Gérald Lelong,et al. Structural significance of nickel sites in aluminosilicate glasses , 2020 .
[12] R. Carlson,et al. Stable chromium isotope fractionation during magmatic differentiation: Insights from Hawaiian basalts and implications for planetary redox conditions , 2020, Geochimica et Cosmochimica Acta.
[13] Shichun Huang,et al. Equilibrium inter-mineral titanium isotope fractionation: Implication for high-temperature titanium isotope geochemistry , 2020 .
[14] T. Elliott,et al. The non-chondritic Ni isotope composition of Earth’s mantle , 2020, Geochimica et Cosmochimica Acta.
[15] T. Mittal,et al. Kinetic and equilibrium Ca isotope effects in high-T rocks and minerals , 2019, Earth and Planetary Science Letters.
[16] M. Herrmann,et al. A beamline for bulk sample x-ray absorption spectroscopy at the high brilliance storage ring PETRA III , 2019 .
[17] E. Alp,et al. Experimentally determined effects of olivine crystallization and melt titanium content on iron isotopic fractionation in planetary basalts , 2018, Geochimica et Cosmochimica Acta.
[18] S. Jacobsen,et al. No Measurable Calcium Isotopic Fractionation During Crystallization of Kilauea Iki Lava Lake , 2018, Geochemistry, Geophysics, Geosystems.
[19] B. Bourdon,et al. Isotope tracers of core formation , 2018, Earth-Science Reviews.
[20] E. Tipper,et al. Mg isotope systematics during magmatic processes: Inter-mineral fractionation in mafic to ultramafic Hawaiian xenoliths , 2018 .
[21] C. Manning,et al. Crystal chemical constraints on inter-mineral Fe isotope fractionation and implications for Fe isotope disequilibrium in San Carlos mantle xenoliths , 2015 .
[22] F. Huang,et al. First-principles investigations of equilibrium calcium isotope fractionation between clinopyroxene and Ca-doped orthopyroxene , 2014 .
[23] H. Williams,et al. Iron isotope tracing of mantle heterogeneity within the source regions of oceanic basalts , 2014 .
[24] D. Neuville,et al. Magma redox and structural controls on iron isotope variations in Earth's mantle and crust , 2014 .
[25] R. B. Georg,et al. High temperature silicon isotope geochemistry , 2014 .
[26] C. Manning,et al. High-temperature equilibrium isotope fractionation of non-traditional stable isotopes: Experiments, theory, and applications , 2013 .
[27] A. Bekker,et al. Nickel Isotope Variations in Terrestrial Silicate Rocks and Geological Reference Materials Measured by MC‐ICP‐MS , 2013 .
[28] E. Schauble. First-principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaquamagnesium(2+) crystals , 2011 .
[29] K. Shimoda,et al. Local structure of magnesium in silicate glasses: a 25Mg 3QMAS NMR study. , 2008, The journal of physical chemistry. B.
[30] R. T. Helz,et al. Investigation of magnesium isotope fractionation during basalt differentiation: Implications for a chondritic composition of the terrestrial mantle , 2007 .
[31] P. Petit,et al. Transition elements in water-bearing silicate glasses/melts. part I. a high-resolution and anharmonic analysis of Ni coordination environments in crystals, glasses, and melts , 2001 .
[32] D. Ghaleb,et al. Zinc environment in aluminoborosilicate glasses by Zn K-edge extended x-ray absorption fine structure spectroscopy , 2000 .
[33] J. Rehr,et al. Coordination chemistry of Ti(IV) in silicate glasses and melts: II. Glasses at ambient temperature and pressure , 1996 .
[34] J. Stebbins,et al. The structural role of Mg in silicate liquids; a high-temperature 25 Mg, 23 Na, and 29 Si NMR study , 1994 .
[35] G. Waychunas,et al. Structural transformation in Ni-bearing Na2Si2O5 glass and melt , 1994 .
[36] S. Conradson,et al. High-Temperature XAS Study of Fe2SiO4 Liquid: Reduced Coordination of Ferrous Iron , 1993, Science.
[37] Georges Calas,et al. Structural environment of nickel in silicate glass/melt systems: Part 2. Geochemical implications , 1993 .
[38] G. Calas,et al. Structural environment of nickel in silicate glass/melt systems: Part 1. Spectroscopic determination of coordination states , 1993 .
[39] T. Grove,et al. An experimental study on the effect of temperature and melt composition on the partitioning of nickel between olivine and silicate melt , 1990 .
[40] G. Waychunas,et al. Evidence from X-ray absorption for network-forming Fe2+ in molten alkali silicates , 1988, Nature.
[41] S. Hart,et al. Nickel partitioning between olivine and silicate melt , 1978 .
[42] J. Bigeleisen,et al. Calculation of Equilibrium Constants for Isotopic Exchange Reactions , 1947 .
[43] A. Alatas,et al. Redox and structural controls on tin isotopic fractionations among magmas , 2020 .
[44] H. O’Neill,et al. The effect of bonding environment on iron isotope fractionation between minerals at high temperature , 2017 .
[45] F. Poitrasson. Silicon Isotope Geochemistry , 2017 .
[46] Gerald Lelong,et al. Local Ordering Around Tetrahedral Co2+ in Silicate Glasses , 2014 .
[47] Cll,et al. Network-forming Ni in silicate glasses , 2007 .
[48] F. Farges,et al. Speciation of Fe in silicate glasses and melts by in-situ XANES spectroscopy , 2007 .
[49] H. Urey,et al. The thermodynamic properties of isotopic substances. , 1947, Journal of the Chemical Society.