The effect of alkalinity on Ni O bond length in silicate glasses: Implications for Ni isotope geochemistry

[1]  T. Elliott,et al.  Equilibrium olivine-melt Mg isotopic fractionation explains high δ26Mg values in arc lavas , 2022, Geochemical Perspectives Letters.

[2]  D. Muir,et al.  Empirical and Experimental Constraints on Fe-Ti Oxide-Melt Titanium Isotope Fractionation Factors , 2022, Goldschmidt2021 abstracts.

[3]  D. Neuville,et al.  Structural, redox and isotopic behaviors of iron in geological silicate glasses: a NRIXS study of Lamb-Mössbauer factors and force constants , 2022, Geochimica et Cosmochimica Acta.

[4]  J. Harvey,et al.  Heterogeneous nickel isotope compositions of the terrestrial mantle - Part 2: Mafic lithologies , 2021, Geochimica et Cosmochimica Acta.

[5]  Laura A. Miller,et al.  The coordination of Cr2+ in silicate glasses and implications for mineral-melt fractionation of Cr isotopes , 2021, Chemical Geology.

[6]  F. Poitrasson,et al.  First-principles calculation of iron and silicon isotope fractionation between Fe-bearing minerals at magmatic temperatures: The importance of second atomic neighbors , 2021, Geochimica et Cosmochimica Acta.

[7]  H. Williams,et al.  Iron isotopes trace primordial magma ocean cumulates melting in Earth’s upper mantle , 2021, Science Advances.

[8]  P. Sprung,et al.  The redox dependence of titanium isotope fractionation in synthetic Ti-rich lunar melts , 2021, Contributions to Mineralogy and Petrology.

[9]  Shichun Huang,et al.  Nickel isotopic evidence for late-stage accretion of Mercury-like differentiated planetary embryos , 2021, Nature communications.

[10]  J. Harvey,et al.  Heterogeneous nickel isotopic compositions in the terrestrial mantle – Part 1: Ultramafic lithologies , 2020, Geochimica et Cosmochimica Acta.

[11]  Gérald Lelong,et al.  Structural significance of nickel sites in aluminosilicate glasses , 2020 .

[12]  R. Carlson,et al.  Stable chromium isotope fractionation during magmatic differentiation: Insights from Hawaiian basalts and implications for planetary redox conditions , 2020, Geochimica et Cosmochimica Acta.

[13]  Shichun Huang,et al.  Equilibrium inter-mineral titanium isotope fractionation: Implication for high-temperature titanium isotope geochemistry , 2020 .

[14]  T. Elliott,et al.  The non-chondritic Ni isotope composition of Earth’s mantle , 2020, Geochimica et Cosmochimica Acta.

[15]  T. Mittal,et al.  Kinetic and equilibrium Ca isotope effects in high-T rocks and minerals , 2019, Earth and Planetary Science Letters.

[16]  M. Herrmann,et al.  A beamline for bulk sample x-ray absorption spectroscopy at the high brilliance storage ring PETRA III , 2019 .

[17]  E. Alp,et al.  Experimentally determined effects of olivine crystallization and melt titanium content on iron isotopic fractionation in planetary basalts , 2018, Geochimica et Cosmochimica Acta.

[18]  S. Jacobsen,et al.  No Measurable Calcium Isotopic Fractionation During Crystallization of Kilauea Iki Lava Lake , 2018, Geochemistry, Geophysics, Geosystems.

[19]  B. Bourdon,et al.  Isotope tracers of core formation , 2018, Earth-Science Reviews.

[20]  E. Tipper,et al.  Mg isotope systematics during magmatic processes: Inter-mineral fractionation in mafic to ultramafic Hawaiian xenoliths , 2018 .

[21]  C. Manning,et al.  Crystal chemical constraints on inter-mineral Fe isotope fractionation and implications for Fe isotope disequilibrium in San Carlos mantle xenoliths , 2015 .

[22]  F. Huang,et al.  First-principles investigations of equilibrium calcium isotope fractionation between clinopyroxene and Ca-doped orthopyroxene , 2014 .

[23]  H. Williams,et al.  Iron isotope tracing of mantle heterogeneity within the source regions of oceanic basalts , 2014 .

[24]  D. Neuville,et al.  Magma redox and structural controls on iron isotope variations in Earth's mantle and crust , 2014 .

[25]  R. B. Georg,et al.  High temperature silicon isotope geochemistry , 2014 .

[26]  C. Manning,et al.  High-temperature equilibrium isotope fractionation of non-traditional stable isotopes: Experiments, theory, and applications , 2013 .

[27]  A. Bekker,et al.  Nickel Isotope Variations in Terrestrial Silicate Rocks and Geological Reference Materials Measured by MC‐ICP‐MS , 2013 .

[28]  E. Schauble First-principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaquamagnesium(2+) crystals , 2011 .

[29]  K. Shimoda,et al.  Local structure of magnesium in silicate glasses: a 25Mg 3QMAS NMR study. , 2008, The journal of physical chemistry. B.

[30]  R. T. Helz,et al.  Investigation of magnesium isotope fractionation during basalt differentiation: Implications for a chondritic composition of the terrestrial mantle , 2007 .

[31]  P. Petit,et al.  Transition elements in water-bearing silicate glasses/melts. part I. a high-resolution and anharmonic analysis of Ni coordination environments in crystals, glasses, and melts , 2001 .

[32]  D. Ghaleb,et al.  Zinc environment in aluminoborosilicate glasses by Zn K-edge extended x-ray absorption fine structure spectroscopy , 2000 .

[33]  J. Rehr,et al.  Coordination chemistry of Ti(IV) in silicate glasses and melts: II. Glasses at ambient temperature and pressure , 1996 .

[34]  J. Stebbins,et al.  The structural role of Mg in silicate liquids; a high-temperature 25 Mg, 23 Na, and 29 Si NMR study , 1994 .

[35]  G. Waychunas,et al.  Structural transformation in Ni-bearing Na2Si2O5 glass and melt , 1994 .

[36]  S. Conradson,et al.  High-Temperature XAS Study of Fe2SiO4 Liquid: Reduced Coordination of Ferrous Iron , 1993, Science.

[37]  Georges Calas,et al.  Structural environment of nickel in silicate glass/melt systems: Part 2. Geochemical implications , 1993 .

[38]  G. Calas,et al.  Structural environment of nickel in silicate glass/melt systems: Part 1. Spectroscopic determination of coordination states , 1993 .

[39]  T. Grove,et al.  An experimental study on the effect of temperature and melt composition on the partitioning of nickel between olivine and silicate melt , 1990 .

[40]  G. Waychunas,et al.  Evidence from X-ray absorption for network-forming Fe2+ in molten alkali silicates , 1988, Nature.

[41]  S. Hart,et al.  Nickel partitioning between olivine and silicate melt , 1978 .

[42]  J. Bigeleisen,et al.  Calculation of Equilibrium Constants for Isotopic Exchange Reactions , 1947 .

[43]  A. Alatas,et al.  Redox and structural controls on tin isotopic fractionations among magmas , 2020 .

[44]  H. O’Neill,et al.  The effect of bonding environment on iron isotope fractionation between minerals at high temperature , 2017 .

[45]  F. Poitrasson Silicon Isotope Geochemistry , 2017 .

[46]  Gerald Lelong,et al.  Local Ordering Around Tetrahedral Co2+ in Silicate Glasses , 2014 .

[47]  Cll,et al.  Network-forming Ni in silicate glasses , 2007 .

[48]  F. Farges,et al.  Speciation of Fe in silicate glasses and melts by in-situ XANES spectroscopy , 2007 .

[49]  H. Urey,et al.  The thermodynamic properties of isotopic substances. , 1947, Journal of the Chemical Society.