Serrodyne Frequency Translation Using Time-Modulated Metasurfaces

Temporally modulated metamaterials have attracted significant attention recently due to their nonreciprocal and frequency converting properties. Here, a transparent, time-modulated metasurface, which functions as a serrodyne frequency translator, is reported at $X$ -band frequencies. With a simple biasing architecture, the metasurface provides electrically tunable transmission phase that covers 360°. A sawtooth waveform is used to modulate the metasurface, allowing Doppler-like frequency translation. Modal analysis of an analogous time-modulated medium is performed to gain insight into the operation of the metasurface-based serrodyne frequency translator. Two such metasurfaces can be cascaded together to achieve magnetless devices that perform either phase or amplitude nonreciprocity.

[1]  Anthony Grbic,et al.  Tunable Metasurfaces: A Polarization Rotator Design , 2019, Physical Review X.

[2]  Shi Jin,et al.  Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems , 2018, National science review.

[3]  Qiang Cheng,et al.  Space-time-coding digital metasurfaces , 2018, Nature Communications.

[4]  S. Tretyakov,et al.  Electromagnetic Nonreciprocity , 2018, Physical Review Applied.

[5]  A. Alú,et al.  Non-reciprocal photonics based on time modulation , 2017 .

[6]  Christophe Caloz,et al.  Nonreciprocal electromagnetic scattering from a periodically space-time modulated slab and application to a quasisonic isolator , 2017, 1705.06311.

[7]  Kenneth Lee Ford,et al.  Bit-Error-Rate Performance of Quadrature Modulation Transmission Using Reconfigurable Frequency Selective Surfaces , 2017, IEEE Antennas and Wireless Propagation Letters.

[8]  D. Sounas,et al.  Doppler cloak restores invisibility to objects in relativistic motion , 2017 .

[9]  C. Caloz,et al.  Mixer-Duplexer-Antenna Leaky-Wave System Based on Periodic Space-Time Modulation , 2016, IEEE Transactions on Antennas and Propagation.

[10]  P. Halevi,et al.  Temporal photonic crystals with modulations of both permittivity and permeability , 2016 .

[11]  Harish Krishnaswamy,et al.  Magnetic-free non-reciprocity based on staggered commutation , 2016, Nature Communications.

[12]  S. Fan,et al.  Dynamic non-reciprocal meta-surfaces with arbitrary phase reconfigurability based on photonic transition in meta-atoms , 2016 .

[13]  Alessandro Toscano,et al.  Nonreciprocal Horn Antennas Using Angular Momentum-Biased Metamaterial Inclusions , 2015, IEEE Transactions on Antennas and Propagation.

[14]  V. Shalaev,et al.  Time-Varying Metasurfaces and Lorentz Non-Reciprocity , 2015, 1507.04836.

[15]  A. Alú,et al.  Space-time gradient metasurfaces , 2015, 1506.00690.

[16]  Andrea Alù,et al.  Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops , 2014, Nature Physics.

[17]  Yuanxun Ethan Wang,et al.  Nonreciprocal Components With Distributedly Modulated Capacitors , 2014, IEEE Transactions on Microwave Theory and Techniques.

[18]  D Vermeulen,et al.  Silicon photonics broadband modulation-based isolator. , 2014, Optics express.

[19]  Andrea Alù,et al.  Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials , 2013, Nature Communications.

[20]  E. Bekele,et al.  Pulse-Shaping Strategy for Time Modulated Arrays—Analysis and Design , 2013, IEEE Transactions on Antennas and Propagation.

[21]  P. Ghelfi,et al.  Photonic Generation of Phase-Modulated RF Signals for Pulse Compression Techniques in Coherent Radars , 2012, Journal of Lightwave Technology.

[22]  A. Grbic,et al.  Design and Free-Space Measurements of Broadband, Low-Loss Negative-Permeability and Negative-Index Media , 2011, IEEE Transactions on Antennas and Propagation.

[23]  Rui Wu,et al.  Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. , 2010, Optics letters.

[24]  S. Chiow,et al.  Broadband optical serrodyne frequency shifting. , 2009, Optics letters.

[25]  E. Ippen,et al.  Optical arbitrary waveform generation , 2007, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[26]  Holger Müller,et al.  Wideband, efficient optical serrodyne frequency shifting with a phase modulator and a nonlinear transmission Line. , 2009, Optics express.

[27]  Hamid Aghvami,et al.  Serrodyne Frequency Translator Using a 360 ' Analog CPW MMIC Phase Shifter , 2004 .

[28]  O. Ishida,et al.  A millimeter-wave broadband monolithic even harmonic image rejection mixer , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[29]  Lu Chao,et al.  Photonic mixers and image-rejection mixers for optical SCM systems , 1997 .

[30]  Stepan Lucyszyn,et al.  24 GHz serrodyne frequency translator using a 360/spl deg/ analog CPW MMIC phase shifter , 1994 .

[31]  P Jessen,et al.  Generation of a frequency comb with a double acousto-optic modulator ring. , 1992, Applied optics.

[32]  C. S. Tsai,et al.  Baseband integrated acousto‐optic frequency shifter , 1992 .

[33]  D. Pozar Microwave Engineering , 1990 .

[34]  H J Shaw,et al.  Acousto-optic frequency shifting in birefringent fiber. , 1984, Optics letters.

[35]  K. Wong,et al.  Electro-optic-waveguide frequency translator in LiNbO(3) fabricated by proton exchange. , 1982, Optics letters.

[36]  J.W. Archer,et al.  A broad-band VHF mixer exhibiting high image rejection over a multidecade baseband frequency range , 1981, IEEE Journal of Solid-State Circuits.

[37]  G. Klein,et al.  The DIGILATOR, a New Broadband Microwave Frequency Translator , 1967 .

[38]  J. S. Jaffe,et al.  Microwave Frequency Translator , 1965 .

[39]  H. Zucker Traveling-Wave Parametric Amplifier Analysis Using Difference Equations , 1961, Proceedings of the IRE.

[40]  Raymond C. Cumming,et al.  The Serrodyne Frequency Translator , 1957, Proceedings of the IRE.