Structure of the bifunctional and Golgi‐associated formiminotransferase cyclodeaminase octamer

Mammalian formiminotransferase cyclodeaminase (FTCD), a 0.5 million Dalton homo‐octameric enzyme, plays important roles in coupling histidine catabolism with folate metabolism and integrating the Golgi complex with the vimentin intermediate filament cytoskeleton. It is also linked to two human diseases, autoimmune hepatitis and glutamate formiminotransferase deficiency. Determination of the FTCD structure by X‐ray crystallography and electron cryomicroscopy revealed that the eight subunits, each composed of distinct FT and CD domains, are arranged like a square doughnut. A key finding indicates that coupling of three subunits governs the octamer‐dependent sequential enzyme activities, including channeling of intermediate and conformational change. The structure further shed light on the molecular nature of two strong antigenic determinants of FTCD recognized by autoantibodies from patients with autoimmune hepatitis and on the binding of thin vimentin filaments to the FTCD octamer.

[1]  X. Estivill,et al.  Cloning and characterization of human FTCD on 21q22.3, a candidate gene for glutamate formiminotransferase deficiency , 2000, Cytogenetic and Genome Research.

[2]  D. Rosenblatt Inherited disorders of folate transport and metabolism , 1989 .

[3]  F. Raushel,et al.  Channeling of substrates and intermediates in enzyme-catalyzed reactions. , 2001, Annual review of biochemistry.

[4]  G. Thomas,et al.  Bi-cycling the furin pathway: from TGN localization to pathogen activation and embryogenesis. , 1999, Trends in cell biology.

[5]  C. Garzelli,et al.  Potential role of the Epstein-Barr virus in systemic lupus erythematosus autoimmunity. , 1998, Clinical and experimental rheumatology.

[6]  R. Mackenzie,et al.  Formiminotransferase-cyclodeaminase from procine liver. Purification and physical properties of the enzyme complex. , 1975, Archives of biochemistry and biophysics.

[7]  R. Mackenzie,et al.  Formiminotransferase cyclodeaminase from porcine liver. An octomeric enzyme containing bifunctional polypeptides. , 1976, Biochimica et biophysica acta.

[8]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[9]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[10]  E. Sztul,et al.  A novel type of regulation of the vimentin intermediate filament cytoskeleton by a Golgi protein. , 2002, European journal of cell biology.

[11]  E. Sztul,et al.  A Novel Interaction of the Golgi Complex with the Vimentin Intermediate Filament Cytoskeleton , 2001, The Journal of cell biology.

[12]  G. Bloom,et al.  58K, a Microtubule-binding Golgi Protein, Is a Formiminotransferase Cyclodeaminase* , 1998, The Journal of Biological Chemistry.

[13]  R. Mackenzie,et al.  Monofunctional domains of formiminotransferase-cyclodeaminase retain similar conformational stabilities outside the bifunctional octamer. , 1997, Biochimica et biophysica acta.

[14]  E. Sztul,et al.  Molecular Cloning, Characterization, and Dynamics of Rat Formiminotransferase Cyclodeaminase, a Golgi-associated 58-kDa Protein* , 1998, Journal of Biological Chemistry.

[15]  F. Alvarez,et al.  Formiminotransferase cyclodeaminase is an organ-specific autoantigen recognized by sera of patients with autoimmune hepatitis. , 1999, Gastroenterology.

[16]  Guoguang Lu FINDNCS: a program to detect non-crystallographic symmetries in protein crystals from heavy-atom sites , 1999 .

[17]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[18]  L. L. Murley,et al.  The two monofunctional domains of octameric formiminotransferase-cyclodeaminase exist as dimers. , 1995, Biochemistry.

[19]  M. Baker,et al.  Bridging the information gap: computational tools for intermediate resolution structure interpretation. , 2001, Journal of molecular biology.

[20]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[21]  J. Dubochet,et al.  Cryo-electron microscopy of vitrified specimens , 1988, Quarterly Reviews of Biophysics.

[22]  R. Stroud,et al.  Crystal structure of thymidylate synthase from T4 phage: component of a deoxynucleoside triphosphate-synthesizing complex. , 1994, Biochemistry.

[23]  F. Alvarez,et al.  Characterization of the B cell response of patients with anti‐liver cytosol autoantibodies in type 2 autoimmune hepatitis , 2003, European journal of immunology.

[24]  P. Johnson,et al.  Meeting report: International autoimmune hepatitis group , 1993, Hepatology.

[25]  C M Weeks,et al.  Crambin: a direct solution for a 400-atom structure. , 1995, Acta crystallographica. Section D, Biological crystallography.

[26]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[27]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[28]  R. Mackenzie,et al.  Tetrahydropterolypolyglutamate derivatives as substrates of two multifunctional proteins with folate-dependent enzyme activities. , 1980, Biochimica et biophysica acta.

[29]  E. Purisima,et al.  The crystal structure of the formiminotransferase domain of formiminotransferase-cyclodeaminase: implications for substrate channeling in a bifunctional enzyme. , 2000, Structure.

[30]  W. Chiu,et al.  A 11.5 A single particle reconstruction of GroEL using EMAN. , 2001, Journal of molecular biology.