Bayesian analysis of covariance matrices and dynamic models for longitudinal data

Parsimonious modelling of the within-subject covariance structure while heeding its positive-definiteness is of great importance in the analysis of longitudinal data. Using the Cholesky decomposition and the ensuing unconstrained and statistically meaningful reparameterisation, we provide a convenient and intuitive framework for developing conditionally conjugate prior distributions for covariance matrices and show their connections with generalised inverse Wishart priors. Our priors offer many advantages with regard to elicitation, positive definiteness, computations using Gibbs sampling, shrinking covariances toward a particular structure with considerable flexibility, and modelling covariances using covariates. Bayesian estimation methods are developed and the results are compared using two simulation studies. These simulations suggest simpler and more suitable priors for the covariance structure of longitudinal data. Copyright Biometrika Trust 2002, Oxford University Press.

[1]  M J Daniels,et al.  Dynamic conditionally linear mixed models for longitudinal data. , 2002, Biometrics.

[2]  R. Kass,et al.  Shrinkage Estimators for Covariance Matrices , 2001, Biometrics.

[3]  Paul H. Garthwaite,et al.  Non‐conjugate prior distribution assessment for multivariate normal sampling , 2001 .

[4]  M. Pourahmadi Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix , 2000 .

[5]  A. Roverato Cholesky decomposition of a hyper inverse Wishart matrix , 2000 .

[6]  C. Morris,et al.  Inference for multivariate normal hierarchical models , 2000 .

[7]  R. Kass,et al.  Nonconjugate Bayesian Estimation of Covariance Matrices and its Use in Hierarchical Models , 1999 .

[8]  M. Rahiala Miscellanea. Random coefficient autoregressive models for longitudinal data , 1999 .

[9]  M. Pourahmadi Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation , 1999 .

[10]  M. Daniels A prior for the variance in hierarchical models , 1999 .

[11]  Michael A. West,et al.  Evaluation and Comparison of EEG Traces: Latent Structure in Nonstationary Time Series , 1999 .

[12]  J. Ledolter,et al.  Analysis of Multi-Unit Variance Components Models with State Space Profiles , 1998 .

[13]  Michael A. West,et al.  Bayesian Forecasting and Dynamic Models (2nd edn) , 1997, J. Oper. Res. Soc..

[14]  Tom Leonard,et al.  The Matrix-Logarithmic Covariance Model , 1996 .

[15]  David J. Spiegelhalter,et al.  Hepatitis B: a case study in MCMC methods , 1996 .

[16]  P. Diggle Analysis of Longitudinal Data , 1995 .

[17]  J. Berger,et al.  Estimation of a Covariance Matrix Using the Reference Prior , 1994 .

[18]  Richard H. Jones,et al.  Longitudinal Data with Serial Correlation : A State-Space Approach , 1994 .

[19]  J. Zidek,et al.  Inference for a covariance matrix , 1994 .

[20]  S. Arnold,et al.  Variable order ante-dependence models , 1994 .

[21]  Tom Leonard,et al.  Bayesian Inference for a Covariance Matrix , 1992 .

[22]  Kunio Tanabe,et al.  An exact Cholesky decomposition and the generalized inverse of the variance-covariance matrix of the multinomial distribution, with applications , 1992 .

[23]  Mark F. J. Steel,et al.  Bayesian-analysis of Systems of Seemingly Unrelated Regression Equations Under a Recursive Extended Natural Conjugate Prior Density , 1988 .

[24]  D. Rubin,et al.  Statistical Analysis with Missing Data. , 1989 .

[25]  C. N. Morris,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[26]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[27]  Chan‐Fu Chen,et al.  Bayesian Inference for a Normal Dispersion Matrix and its Application to Stochastic Multiple Regression Analysis , 1979 .

[28]  T. W. Anderson Repeated Measurements on Autoregressive Processes , 1978 .

[29]  K. Gabriel,et al.  Ante-dependence Analysis of an Ordered Set of Variables , 1962 .

[30]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .