Cortical Enlightenment: Are Attentional Gamma Oscillations Driven by ING or PING?

[1]  Paul H. E. Tiesinga,et al.  Spatial attention in area V4 is mediated by circuits in primary visual cortex , 2009, Neural Networks.

[2]  R. Reid,et al.  Direct Activation of Sparse, Distributed Populations of Cortical Neurons by Electrical Microstimulation , 2009, Neuron.

[3]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[4]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[5]  D. McCormick,et al.  Rapid Neocortical Dynamics: Cellular and Network Mechanisms , 2009, Neuron.

[6]  Jacob G. Bernstein,et al.  Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain , 2009, Neuron.

[7]  D. Heeger,et al.  The Normalization Model of Attention , 2009, Neuron.

[8]  Harvey A Swadlow,et al.  Task difficulty modulates the activity of specific neuronal populations in primary visual cortex , 2008, Nature Neuroscience.

[9]  G. Buzsáki,et al.  Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex , 2008, Nature Neuroscience.

[10]  David S. Greenberg,et al.  Population imaging of ongoing neuronal activity in the visual cortex of awake rats , 2008, Nature Neuroscience.

[11]  P. Tiesinga,et al.  Role of interneuron diversity in the cortical microcircuit for attention. , 2008, Journal of neurophysiology.

[12]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[13]  T. Sejnowski,et al.  Regulation of spike timing in visual cortical circuits , 2008, Nature Reviews Neuroscience.

[14]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[15]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[16]  K. Deisseroth,et al.  Circuit-breakers: optical technologies for probing neural signals and systems , 2007, Nature Reviews Neuroscience.

[17]  Terrence J. Sejnowski,et al.  Selective attention through phase relationship of excitatory and inhibitory input synchrony in a model cortical neuron , 2006, Neural Networks.

[18]  John H. R. Maunsell,et al.  Effects of spatial attention on contrast response functions in macaque area V4. , 2006, Journal of neurophysiology.

[19]  Paul H. E. Tiesinga,et al.  Attentional modulation of firing rate and synchrony in a model cortical network , 2005, Journal of Computational Neuroscience.

[20]  S. Epstein,et al.  Background gamma rhythmicity and attention in cortical local circuits: a computational study. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[22]  Jorge V. José,et al.  Inhibitory synchrony as a mechanism for attentional gain modulation , 2004, Journal of Physiology-Paris.

[23]  J. Reynolds,et al.  Attentional modulation of visual processing. , 2004, Annual review of neuroscience.

[24]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[25]  Bard Ermentrout,et al.  When inhibition not excitation synchronizes neural firing , 1994, Journal of Computational Neuroscience.

[26]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[27]  Paul H. E. Tiesinga,et al.  Spike-time reliability of periodically driven integrate-and-fire neurons , 2002, Neurocomputing.

[28]  Rajesh P. N. Rao,et al.  Frequency dependence of spike timing reliability in cortical pyramidal cells and interneurons. , 2001, Journal of neurophysiology.

[29]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[30]  T. Sejnowski,et al.  Comparison of current-driven and conductance-driven neocortical model neurons with Hodgkin-Huxley voltage-gated channels. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  R. Traub,et al.  Inhibition-based rhythms: experimental and mathematical observations on network dynamics. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[32]  C. Gray,et al.  Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Emilio Salinas,et al.  Gain Modulation A Major Computational Principle of the Central Nervous System , 2000, Neuron.

[34]  P H Tiesinga,et al.  Robust gamma oscillations in networks of inhibitory hippocampal interneurons , 1999, Network.

[35]  Nicolas Brunel,et al.  Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with Low Firing Rates , 1999, Neural Computation.

[36]  O. Paulsen,et al.  Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro , 1998, Nature.

[37]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[38]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[39]  Marius Usher,et al.  The Effect of Synchronized Inputs at the Single Neuron Level , 1994, Neural Computation.

[40]  William T. Newsome,et al.  Cortical microstimulation influences perceptual judgements of motion direction , 1990, Nature.

[41]  U. Mitzdorf Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. , 1985, Physiological reviews.

[42]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.