Mediterranean vegetation dynamics: modelling problems and functional types

Gap models have been applied to a wide range of ecosystems, mainly temperate and boreal forests, but rarely have such models been applied to Mediterranean ecosystems. In the present review we address some problems of gap models for predicting the long-term dynamics of Mediterranean ecosystems, and we suggest plant functional types suitable for modelling based on responses to disturbance. Most gap models do not take into account different life forms, interactions with fire (e.g., resprouting and stimulation of the germination), and underground structures. Long term human impact on Mediterranean ecosystems has made a significant impact on the current landscapes. That intense land use, involving long-lived slow-growing species, has had long-term consequences. It is not possible to understand Mediterranean vegetation and to validate any model without considering these factors. The lack of data for Mediterranean species may be overcome by taking into account correlations of traits and trade-offs between different functional types. A simple disturbance-based functional group system is discussed.

[1]  M. Huston,et al.  A theory of the spatial and temporal dynamics of plant communities , 1989, Vegetatio.

[2]  J. Keeley,et al.  Mechanism of smoke‐induced seed germination in a post‐fire chaparral annual , 1998 .

[3]  L. Trabaud Influence du régime des feux sur les modifications à court terme et la stabilité à long terme de la flore d'une garrigue de Quercus coccifera , 1992 .

[4]  M. Arroyo,et al.  Ecology and Biogeography of Mediterranean Ecosystems in Chile, California, and Australia , 1995, Ecological Studies.

[5]  I. Noble,et al.  The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances , 1980, Vegetatio.

[6]  K. Georghiou,et al.  Ecophysiology of fire-stimulated seed germination in Cistus inca nus ssp. creticus (l.) Heywood and , 1988 .

[7]  W. Bond Effects of Global Change on Plant—Animal Synchrony: Implications for Pollination and Seed Dispersal in Mediterranean Habitats , 1995 .

[8]  S. Kellomäki,et al.  Application of a gap model for the simulation of forest ground vegetation in boreal conditions , 1991 .

[9]  Wolfgang Cramer,et al.  Plant functional types and climatic change: Introduction , 1996 .

[10]  Juli G. Pausas,et al.  Resprouting of Quercus suber in NE Spain after fire. , 1997 .

[11]  Bernard Dell,et al.  Resilience in mediterranean-type ecosystems , 1986, Tasks for vegetation science.

[12]  Thomas M. Smith,et al.  The potential for application of individual-based simulation models for assessing the effects of global change , 1992 .

[13]  Climate and its Influential Factors, Especially the Anthropogenic Enhancement of the Greenhouse Effect and its Possible Impacts — Results of the Second Assessment Report of the IPCC , 1999 .

[14]  E. Gutiérrez,et al.  Annual cork-ring width variability of Quercus suber L. in relation to temperature and precipitation (Extremadura, southwestern Spain) , 1996 .

[15]  H. Shugart,et al.  Vegetation Dynamics and Global Change , 1993 .

[16]  R. L. Davidson Effects of Soil Nutrients and Moisture on Root/Shoot Ratios in Lolium perenne L. and Trifolium repens L , 1969 .

[17]  M. Vilà,et al.  Sprout recruitment and self-thinning of Erica multiflora after clipping , 1995, Oecologia.

[18]  C. Gimingham,et al.  Ecology of Heathlands , 1974 .

[19]  J. Piñol,et al.  Crecimiento diametral de la encina (Quercus ilex L.) en un año de abundante precipitación estival : efecto de la irrigación previa y de la fertilización , 1994 .

[20]  J. Retana,et al.  Regeneration by sprouting of holm-oak (Quercus ilex) stands exploited by selection thinning , 2004, Vegetatio.

[21]  Xosé Pedro Rodríguez-Álvarez,et al.  Lower Pleistocene hominids and artifacts from Atapuerca-TD6 (Spain) , 1995, Science.

[22]  Peter Kareiva,et al.  Biotic interactions and global change. , 1993 .

[23]  J. R. Wallis,et al.  Some ecological consequences of a computer model of forest growth , 1972 .

[24]  Will Steffen,et al.  Global change and terrestrial ecosystems. The operational plan. , 1992 .

[25]  M. Vilà,et al.  Effect of local competition on resprouting of Arbutus unedo after clipping , 1994 .

[26]  L. Ferrés Creixement radial i producció primària neta aèria a l'alzinar de La Castanya (Montseny, Barcelona) , 1985 .

[27]  J. Pausas MODELLING FIRE-PRONE VEGETATION DYNAMICS , 1998 .

[28]  K. Mitrakos,et al.  A theory for Mediterranean plant life [evergreen sclerophyllous shrubs, climatic stresses, Mediterranean climate] , 1980 .

[29]  J. Canadell,et al.  Lignotuber reserves support regrowth following clipping of two Mediterranean shrubs , 1998 .

[30]  S. Payette,et al.  A Systems Analysis of the Global Boreal Forest: Fire as a controlling process in the North American boreal forest , 1992 .

[31]  Structure, biomass and production of a resprouted holm-oak (Quercus ilex L.) forest in NE Spain , 1992 .

[32]  I. Noble,et al.  The Use of Vital Attributes to Predict Successional Changes in Plant Communities Subject to Recurrent Disturbances , 1980 .

[33]  George P. Malanson,et al.  Realized versus fundamental niche functions in a model of chaparral response to climatic change , 1992 .

[34]  H. N. LeHouerou Fire and vegetation in the Mediterranean basin , 1974 .

[35]  Juli G. Pausas,et al.  A FOREST SIMULATION MODEL FOR PREDICTING EUCALYPT DYNAMICS AND HABITAT QUALITY FOR ARBOREAL MARSUPIALS , 1997 .

[36]  M. Nice,et al.  Man's Role in Changing the Face of the Earth. , 1956 .

[37]  V. Calzada La restauración de la cubierta vegetal en la Comunidad Valenciana , 1996 .

[38]  Wolfgang Cramer,et al.  A simulation model for the transient effects of climate change on forest landscapes , 1993 .

[39]  S. Rambal Water balance and pattern of root water uptake by a Quercus coccifera L . evergreen scrub , 2004 .

[40]  T. Auld The Survival of Juvenile Plants of the Resprouting Shrub Angophora hispida (Myrtaceae) after a Simulated Low-intensity Fire , 1990 .

[41]  Ian R. Noble,et al.  A functional classification for predicting the dynamics of landscapes , 1996 .

[42]  J. Pausas,et al.  Potential impact of harvesting for the long-term conservation of arboreal marsupials , 1998, Landscape Ecology.

[43]  J. Bellot,et al.  Structure, biomass and production of a resprouted holm-oak (Quercus ilex L.) forest in NE Spain , 1992, Vegetatio.

[44]  I. Noble,et al.  Modelling the response of eucalypts to fire, Brindabella Ranges, ACT , 1996 .

[45]  J. Kummerow,et al.  Root biomass, root distribution and the fine-root growth dynamics of Quercus coccifera L. in the garrigue of southern France , 1990, Vegetatio.

[46]  K. Georghiou,et al.  Ecophysiology of fire‐stimulated seed germination in Cistus incanus ssp. creticus (L.) Hey wood and C. salvifolius L. , 1988 .

[47]  H. Mooney,et al.  VEGETATIVE REGROWTH FOLLOWING CUTTING IN THE SHRUB BACCHARIS PILULARIS SSP. CONSANGUINEA (DC) C. B. WOLF , 1985 .

[48]  G. Watts,et al.  Climate Change 1995 , 1998 .

[49]  F. Kienast,et al.  Simulating forest succession along ecological gradients in southern Central Europe , 2004, Vegetatio.

[50]  A. Watt,et al.  Pattern and process in the plant community , 1947 .

[51]  Gordon H. Orians,et al.  A Cost-Income Model of Leaves and Roots with Special Reference to Arid and Semiarid Areas , 1977, The American Naturalist.

[52]  M. Westoby,et al.  Opportunistic management for rangelands not at equilibrium. , 1989 .

[53]  William K. Lauenroth,et al.  A gap dynamics simulation model of succession in a semiarid grassland , 1990 .

[54]  I. R. Noble,et al.  Automatic model simplification: the generation of replacement sequences and their use in vegetation modelling , 1993 .

[55]  N. Brown,et al.  The promotion of seed germination of Cape Erica species by plant-derived smoke , 1993 .

[56]  James F. Reynolds,et al.  A Model Allocating Growth Among Leaf Proteins, Shoot Structure, and Root Biomass to Produce Balanced Activity , 1991 .

[57]  Will Steffen,et al.  Global change and terrestrial ecosystems , 1996 .

[58]  W. Steffen,et al.  Global vegetation models: incorporating transient changes to structure and composition , 1996 .

[59]  N. Burrows Reducing the abundance of Banksia grandis in the jarrah forest by the use of controlled fire , 1985 .

[60]  H. Shugart A Theory of Forest Dynamics , 1984 .

[61]  Z. Naveh,et al.  The evolutionary significance of fire in the mediterranean region , 2006, Vegetatio.

[62]  M. Austin Modelling the Environmental Niche of Plants: Implications for Plant Community Response to Elevated CO2 Levels. , 1992 .

[63]  B. W. Wilgen,et al.  Fire and Plants , 1995, Population and Community Biology Series.

[64]  Andrew D. Moore,et al.  An individualistic model of vegetation stand dynamics. , 1990 .

[65]  John Sweeney,et al.  The International Geosphere-Biosphere programme. , 1997 .

[66]  J. Canadell,et al.  Root biomass of Quercusilex in a montane Mediterranean forest , 1991 .

[67]  N. Margaris Structure and dynamics in a phryganic (East Mediterranean) ecosystem , 1976 .

[68]  J. Canadell,et al.  Resprouting vigour of two mediterranean shrub species after experimental fire treatments , 1991, Vegetatio.

[69]  S. Rambal,et al.  Water balance and pattern of root water uptake by a Quercus coccifera L. evergreen srub , 1984, Oecologia.

[70]  Jon E. Keeley,et al.  Resilience of mediterranean shrub communities to fires , 1986 .

[71]  Harald Bugmann,et al.  Sensitivity of forests in the European Alps to future climatic change , 1997 .

[72]  D. W. Goodall,et al.  Mediterranean-type shrublands , 2004, Vegetatio.

[73]  J. Keeley Seed-Germination Patterns in Fire-Prone Mediterranean-Climate Regions , 1995 .

[74]  F. Rodà,et al.  Effects of irrigation and fertilization on stem diameter growth in a Mediterranean holm oak forest , 1994 .

[75]  George P. Malanson,et al.  Vigour of post-fire resprouting by Quercus coccifera L. , 1988 .

[76]  C. Stringer,et al.  African Exodus: The Origins of Modern Humanity , 1996 .

[77]  F. Niell,et al.  Short-term and small-scale patterns of post-fire regeneration in a semi-arid dolomitic basin of Southern Spain , 1992 .

[78]  J. Canadell,et al.  Underground Structures of Woody Plants in Mediterranean Ecosystems of Australia, California, and Chile , 1995 .

[79]  J. Shao,et al.  Testing the MEDALUS hillslope model , 1996 .

[80]  Herman H. Shugart,et al.  A computer model of succession and fire response of the high‐altitude Eucalyptus forest of the Brindabella Range, Australian Capital Territory , 1981 .

[81]  J. Retana,et al.  Regeneration by sprouting of holm-oak ( Quercus ilex ) stands exploited by selection thinning , 1992 .

[82]  A. Cavanilles Observaciones sobre la historia natural, geografía, agricultura, población y frutos del Reyno de Valencia , 1989 .

[83]  P. J. Wood,et al.  World Forest Biomass and Primary Production Data. , 1983 .

[84]  A. Solomon Transient response of forests to CO2-induced climate change: simulation modeling experiments in eastern North America , 1986, Oecologia.

[85]  Thomas M. Smith,et al.  Plant Functional Types , 1993 .

[86]  Harald Bugmann,et al.  Functional types of trees in temperate and boreal forests: classification and testing , 1996 .

[87]  F. Rego,et al.  Changes in understory vegetation following prescribed fire in maritime pine forests , 1991 .