Data assimilation using sequential monte carlo methods in wildfire spread simulation

Assimilating real-time sensor data into large-scale spatial-temporal simulations, such as simulations of wildfires, is a promising technique for improving simulation results. This asks for advanced data assimilation methods that can work with the complex structures and nonlinear behaviors associated with the simulation models. This article presents a data assimilation framework using Sequential Monte Carlo (SMC) methods for wildfire spread simulations. The models and algorithms of the framework are described, and experimental results are provided. This work demonstrates the feasibility of applying SMC methods to data assimilation of wildfire spread simulations. The developed framework can potentially be generalized to other application areas where sophisticated simulation models are used.

[1]  Rong Chen,et al.  SEQUENTIAL MONTE CARLO METHODS AND THEIR APPLICATIONS , 2005 .

[2]  Ali H. Sayed,et al.  Linear Estimation (Information and System Sciences Series) , 2000 .

[3]  Jonathan D. Beezley,et al.  ENSEMBLE KALMAN FILTERS IN COUPLED ATMOSPHERE-SURFACE MODELS , 2009 .

[4]  Fredrik Gustafsson,et al.  Particle filters for positioning, navigation, and tracking , 2002, IEEE Trans. Signal Process..

[5]  Thomas B. Schön,et al.  Estimation of Nonlinear Dynamic Systems : Theory and Applications , 2006 .

[6]  Nikos Paragios,et al.  Application of Particle Filtering to Image Enhancement , 2005 .

[7]  Benjamin Moseley,et al.  Fast clustering using MapReduce , 2011, KDD.

[8]  R. Daley Atmospheric Data Analysis , 1991 .

[9]  Rocco Rongo,et al.  A New Algorithm for Simulating Wildfire Spread through Cellular Automata , 2011, TOMC.

[10]  Guan Qin,et al.  A WILDLAND FIRE DYNAMIC DATA-DRIVEN APPLICATION SYSTEM , 2006 .

[11]  M. Finney FARSITE : Fire Area Simulator : model development and evaluation , 1998 .

[12]  Bernd Freisleben,et al.  Cloud MapReduce for Monte Carlo bootstrap applied to Metabolic Flux Analysis , 2013, Future Gener. Comput. Syst..

[13]  Xiaolin Hu,et al.  Integrated simulation and optimization for wildfire containment , 2009, TOMC.

[14]  Anthony Vodacek,et al.  Autonomous field-deployable wildland fire sensors , 2003 .

[15]  Tao Chen,et al.  Dynamic data rectification using particle filters , 2008, Comput. Chem. Eng..

[16]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[17]  Christopher K. Wikle,et al.  Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.

[18]  Naga K. Govindaraju,et al.  Mars: A MapReduce Framework on graphics processors , 2008, 2008 International Conference on Parallel Architectures and Compilation Techniques (PACT).

[19]  HuXiaolin,et al.  Data assimilation using sequential monte carlo methods in wildfire spread simulation , 2012 .

[20]  Bernard P. Zeigler,et al.  Theory of modeling and simulation , 1976 .

[21]  Cedric Nishan Canagarajah,et al.  Mobility Tracking in Cellular Networks Using Particle Filtering , 2007, IEEE Transactions on Wireless Communications.

[22]  John Wilkin,et al.  Four-Dimensional Variational Assimilation of Satellite Temperature and Sea Level Data in the Coastal Ocean and Adjacent Deep Sea , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[23]  Clark N. Taylor,et al.  Particle Filter Based Mosaicking For Tracking Forest Fires , 2007 .

[24]  Robert C. Seli,et al.  BehavePlus fire modeling system, version 4.0: User's Guide , 2005 .

[25]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[26]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[27]  Jignesh M. Patel,et al.  A comparison of join algorithms for log processing in MaPreduce , 2010, SIGMOD Conference.

[28]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[29]  C. E. Van Wagner,et al.  Height of Crown Scorch in Forest Fires , 1973 .

[30]  Jie Liang,et al.  Origin of scaling behavior of protein packing density: A sequential Monte Carlo study of compact long chain polymers , 2003, cond-mat/0301085.

[31]  Sorin C. Popescu,et al.  Mapping surface fuel models using lidar and multispectral data fusion for fire behavior , 2008 .

[32]  Steven W. Running,et al.  Ecosystem Disturbance, Carbon, and Climate , 2008, Science.

[33]  E. Pastor,et al.  Mathematical models and calculation systems for the study of wildland fire behaviour , 2003 .

[34]  Jon E. Keeley,et al.  FUTURE OF CALIFORNIA FLORISTICS AND SYSTEMATICS: WILDFIRE THREATS TO THE CALIFORNIA FLORA , 1995 .

[35]  Geoffrey C. Fox,et al.  Twister: a runtime for iterative MapReduce , 2010, HPDC '10.

[36]  Justin M. Bradley,et al.  Particle Filter Based Mosaicking for Forest Fire Tracking , 2007 .

[37]  Xiaolin Hu,et al.  A dynamic data driven application system for wildfire spread simulation , 2009, Proceedings of the 2009 Winter Simulation Conference (WSC).

[38]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[39]  Michael C. Schatz,et al.  Rapid parallel genome indexing with MapReduce , 2011, MapReduce '11.

[40]  R. Weber,et al.  Modelling fire spread through fuel beds , 1991 .

[41]  Judith Winterkamp,et al.  Studying wildfire behavior using FIRETEC , 2002 .

[42]  Jonathan D. Beezley,et al.  A wildland fire model with data assimilation , 2007, Math. Comput. Simul..

[43]  Yalchin Efendiev,et al.  DDDAS Approaches to Wildland Fire Modeling and Contaminant Tracking , 2006, Proceedings of the 2006 Winter Simulation Conference.

[44]  Tomoyuki Higuchi,et al.  Sequential Data Assimilation: Information Fusion of a Numerical Simulation and Large Scale Observation Data , 2006, J. Univers. Comput. Sci..

[45]  Dan Crisan,et al.  Particle Filters - A Theoretical Perspective , 2001, Sequential Monte Carlo Methods in Practice.

[46]  Christoforos E. Kozyrakis,et al.  Evaluating MapReduce for Multi-core and Multiprocessor Systems , 2007, 2007 IEEE 13th International Symposium on High Performance Computer Architecture.

[47]  Yi Pan,et al.  Parallel rough set based knowledge acquisition using MapReduce from big data , 2012, BigMine '12.

[48]  Xiaolin Hu,et al.  State estimation using particle filters in wildfire spread simulation , 2009, SpringSim '09.

[49]  Xiaolin Hu,et al.  Towards applications of particle filters in wildfire spread simulation , 2008, 2008 Winter Simulation Conference.

[50]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[51]  Eugenia Kalnay,et al.  Atmospheric Modeling, Data Assimilation and Predictability , 2002 .

[52]  Xiaolin Hu,et al.  DEVS-FIRE: Towards an Integrated Simulation Environment for Surface Wildfire Spread and Containment , 2008, Simul..

[53]  Wei Zhao,et al.  A Note on Dynamic Data Driven Wildfire Modeling , 2004, International Conference on Computational Science.

[54]  K. Kraus,et al.  FROM SINGLE-PULSE TO FULL-WAVEFORM AIRBORNE LASER SCANNERS: POTENTIAL AND PRACTICAL CHALLENGES , 2004 .

[55]  Wolfram Burgard,et al.  Particle Filters for Mobile Robot Localization , 2001, Sequential Monte Carlo Methods in Practice.

[56]  Neil J. Gordon,et al.  Editors: Sequential Monte Carlo Methods in Practice , 2001 .

[57]  Xiaolin Hu,et al.  DEVS-FIRE: design and application of formal discrete event wildfire spread and suppression models , 2012, Simul..

[58]  Naifang Bei,et al.  Atmospheric Chemistry and Physics Using 3dvar Data Assimilation System to Improve Ozone Simulations in the Mexico City Basin , 2022 .

[59]  Haris N. Koutsopoulos,et al.  Nonlinear Kalman Filtering Algorithms for On-Line Calibration of Dynamic Traffic Assignment Models , 2006, IEEE Transactions on Intelligent Transportation Systems.