Network estimation in State Space Models with L1-regularization constraint

Microarray technologies and related methods coupled with appropriate mathematical and statistical models have made it possible to identify dynamic regulatory networks by measuring time course expression levels of many genes simultaneously. However one of the challenges is the high-dimensional nature of such data coupled with the fact that these gene expression data are known not to include various biological process. As genomic interactions are highly structured, the aim was to derive a method for inferring a sparse dynamic network in a high dimensional data setting. The paper assumes that the observations are noisy measurements of gene expression in the form of mRNAs, whose dynamics can be described by some partially observed process. Key words : genomic; gene expression; microarray; sparse; EM algorithm; state space model.

[1]  A. Willsky,et al.  Latent variable graphical model selection via convex optimization , 2010 .

[2]  P. Green On Use of the EM Algorithm for Penalized Likelihood Estimation , 1990 .

[3]  L. Fahrmeir,et al.  Penalized likelihood smoothing in robust state space models , 1999 .

[4]  João Ricardo Sato,et al.  Modeling gene expression regulatory networks with the sparse vector autoregressive model , 2007, BMC Systems Biology.

[5]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[6]  Nozer D. Singpurwalla,et al.  Understanding the Kalman Filter , 1983 .

[7]  Walter Zucchini,et al.  Model Selection , 2011, International Encyclopedia of Statistical Science.

[8]  Jiguo Cao,et al.  Estimating dynamic models for gene regulation networks , 2008, Bioinform..

[9]  Cheng-Yan Kao,et al.  A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae , 2005, Bioinform..

[10]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[11]  A. Doucet,et al.  Smoothing algorithms for state–space models , 2010 .

[12]  Ernst Wit,et al.  Bayesian inference for the MAPK/ERK pathway by considering the dependency of the kinetic parameters , 2008 .

[13]  Zoubin Ghahramani,et al.  A Bayesian approach to reconstructing genetic regulatory networks with hidden factors , 2005, Bioinform..

[14]  R. Shumway,et al.  AN APPROACH TO TIME SERIES SMOOTHING AND FORECASTING USING THE EM ALGORITHM , 1982 .

[15]  Parameter Estimation for Linear Dynamical SystemsZoubin , 1996 .

[16]  Zoubin Ghahramani,et al.  Modeling T-cell activation using gene expression profiling and state-space models , 2004, Bioinform..

[17]  Yang Jing L1 Regularization Path Algorithm for Generalized Linear Models , 2008 .

[18]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[19]  V. Vinciotti,et al.  Statistical Reconstruction of Transcription Factor Activity Using Michaelis–Menten Kinetics , 2007, Biometrics.

[20]  V. Vinciotti,et al.  Reconstructing repressor protein levels from expression of gene targets in Escherichia coli , 2006, Proceedings of the National Academy of Sciences.

[21]  Robert H. Shumway,et al.  Dynamic Mixed Models for Irregularly Observed Time Series , 2000 .

[22]  L. Fahrmeir,et al.  Penalized likelihood estimation and iterative Kalman smoothing for non-Gaussian dynamic regression models , 1997 .

[23]  Zoubin Ghahramani,et al.  Modeling genetic regulatory networks using gene expression profiling and state space models , 2005 .

[24]  Nicolas Brunel,et al.  Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference , 2007, Bioinform..

[25]  Fentaw Abegaz,et al.  Sparse time series chain graphical models for reconstructing genetic networks. , 2013, Biostatistics.

[26]  James M. Bower,et al.  Computational modeling of genetic and biochemical networks , 2001 .

[27]  Fang-Xiang Wu,et al.  Modeling Gene Expression from Microarray Expression Data with State-Space Equations , 2003, Pacific Symposium on Biocomputing.

[28]  H. Akaike A new look at the statistical model identification , 1974 .

[29]  C. R. McClung,et al.  The Arabidopsis thaliana Clock , 2004, Journal of biological rhythms.

[30]  Wenjiang J. Fu Penalized Regressions: The Bridge versus the Lasso , 1998 .

[31]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[32]  David R. Anderson,et al.  Bayesian Methods in Cosmology: Model selection and multi-model inference , 2009 .

[33]  Rebecca W Doerge,et al.  An Empirical Bayesian Method for Estimating Biological Networks from Temporal Microarray Data , 2010, Statistical applications in genetics and molecular biology.

[34]  Patrik D'haeseleer,et al.  Genetic network inference: from co-expression clustering to reverse engineering , 2000, Bioinform..

[35]  David S. Stoffer Time series analysis by state space models: J. Durbin and S. J. Koopman; Oxford University Press, Oxford, 2001, pp 253 + xvii, ISBN: 0 19 852354 8 , 2003, Autom..

[36]  R. W. Doerge,et al.  The KM-Algorithm Identifies Regulated Genes in Time Series Expression Data , 2009, Adv. Bioinformatics.

[37]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[38]  Tomoyuki Higuchi,et al.  State-space approach with the maximum likelihood principle to identify the system generating time-course gene expression data of yeast , 2006, Int. J. Data Min. Bioinform..

[39]  Colin L. Mallows,et al.  Some Comments on Cp , 2000, Technometrics.

[40]  Ernst Wit,et al.  State-space modeling of dynamic genetic networks , 2013 .

[41]  Jiguo Cao,et al.  Parameter estimation for differential equations: a generalized smoothing approach , 2007 .

[42]  Aurélien Mazurie,et al.  Gene networks inference using dynamic Bayesian networks , 2003, ECCB.

[43]  Korbinian Strimmer,et al.  An empirical Bayes approach to inferring large-scale gene association networks , 2005, Bioinform..

[44]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[45]  Robert Tibshirani,et al.  The Entire Regularization Path for the Support Vector Machine , 2004, J. Mach. Learn. Res..

[46]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.