Finite-element solution of compressible viscous flows using conservative variables
暂无分享,去创建一个
[1] T. Hughes,et al. The Galerkin/least-squares method for advective-diffusive equations , 1988 .
[2] T. Pulliam. Low Reynolds number numerical solutions of chaotic flow , 1989 .
[3] Michel Fortin,et al. On finite element approximation and stabilization methods for compressible viscous flows , 1993 .
[4] Thomas J. R. Hughes,et al. A globally convergent matrix-free algorithm for implicit time-marching schemes arising in finite element analysis in fluids , 1991 .
[5] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[6] R. F. Warming,et al. Diagonalization and simultaneous symmetrization of the gas-dynamic matrices , 1975 .
[7] F. Shakib. Finite element analysis of the compressible Euler and Navier-Stokes equations , 1989 .
[8] A. Soulaïmani,et al. Une méthode d'éléments finis pour le calcul des écoulements compressibles utilisant les variables conservatives et la méthode SUPG , 1994 .
[9] A. Galeão,et al. A consistent approximate upwind Petrov—Galerkin method for convection-dominated problems , 1988 .
[10] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier—Stokes equations and the second law of thermodynamics , 1986 .
[11] A. Harten. On the symmetric form of systems of conservation laws with entropy , 1983 .