Sixth-order symmetric and symplectic exponentially fitted Runge-Kutta methods of the Gauss type

The construction of exponentially fitted Runge-Kutta (EFRK) methods for the numerical integration of Hamiltonian systems with oscillatory solutions is considered. Based on the symplecticness, symmetry, and exponential fitting properties, two new three-stage RK integrators of the Gauss type with fixed or variable nodes, are obtained. The new exponentially fitted RK Gauss type methods integrate exactly differential systems whose solutions can be expressed as linear combinations of the set of functions {exp(@lt),exp([email protected])}, @[email protected]?C, and in particular {sin(@wt),cos(@wt)} when @[email protected], @[email protected]?R. The algebraic order of the new integrators is also analyzed, obtaining that they are of sixth-order like the classical three-stage RK Gauss method. Some numerical experiments show that the new methods are more efficient than the symplectic RK Gauss methods (either standard or else exponentially fitted) proposed in the scientific literature.

[1]  W. Gautschi Numerical integration of ordinary differential equations based on trigonometric polynomials , 1961 .

[2]  J. M. Franco Runge-Kutta methods adapted to the numerical integration of oscillatory problems , 2004 .

[3]  J. M. Franco Exponentially fitted explicit Runge-Kutta-Nyström methods , 2004 .

[4]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[5]  J. M. Franco An embedded pair of exponentially fitted explicit Runge-Kutta methods , 2002 .

[6]  H. De Meyer,et al.  Exponentially fitted Runge-Kutta methods , 2000 .

[7]  H. De Meyer,et al.  Frequency determination and step-length control for exponentially-fitted Runge---Kutta methods , 2001 .

[8]  Jesús Vigo-Aguiar,et al.  AN ADAPTED SYMPLECTIC INTEGRATOR FOR HAMILTONIAN PROBLEMS , 2001 .

[9]  Wilson C. K. Poon,et al.  Phase behavior and crystallization kinetics of PHSA-coated PMMA colloids , 2003 .

[10]  John P. Coleman,et al.  Mixed collocation methods for y ′′ =f x,y , 2000 .

[11]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[12]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[13]  Hans Van de Vyver A fourth-order symplectic exponentially fitted integrator , 2006, Comput. Phys. Commun..

[14]  T. E. Simos,et al.  Exponentially fitted symplectic integrator. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  G. Vanden Berghe,et al.  Exponential fitted Runge--Kutta methods of collocation type: fixed or variable knot points? , 2003 .

[16]  Manuel Calvo,et al.  Structure preservation of exponentially fitted Runge-Kutta methods , 2008 .

[17]  D. G. Bettis Runge-Kutta algorithms for oscillatory problems , 1979 .

[18]  Kazufumi Ozawa,et al.  A functional fitting Runge-Kutta method with variable coefficients , 2001 .

[19]  J. M. Sanz-Serna,et al.  Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.

[20]  Kazufumi Ozawa A functionally fitted three-stage explicit singly diagonally implicit Runge-Kutta method , 2005 .

[21]  Beatrice Paternoster,et al.  Runge-Kutta(-Nystro¨m) methods for ODEs with periodic solutions based on trigonometric polynomials , 1998 .

[22]  H. De Meyer,et al.  Exponentially-fitted explicit Runge–Kutta methods , 1999 .

[23]  T. E. Simos,et al.  An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions , 1998 .