Identifying Lightning Structures Via Machine Learning

[1]  E. K. Lenzi,et al.  Machine learning partners in criminal networks , 2022, Scientific Reports.

[2]  E. Schömer,et al.  End-to-End Prediction of Lightning Events from Geostationary Satellite Images , 2022, Remote Sensing.

[3]  Arthur A. B. Pessa,et al.  Determining liquid crystal properties with ordinal networks and machine learning , 2022, Chaos, Solitons & Fractals.

[4]  W. Nazarewicz,et al.  Machine Learning in Nuclear Physics , 2021, 2112.02309.

[5]  T. Marshall,et al.  Luminosity with large amplitude pulses after the initial breakdown stage in intracloud lightning flashes , 2021, Atmospheric Research.

[6]  P. Garcia A machine learning based control of chaotic systems , 2021, Chaos, Solitons & Fractals.

[7]  W. Lyu,et al.  A deep learning framework for lightning forecasting with multi‐source spatiotemporal data , 2021, Quarterly Journal of the Royal Meteorological Society.

[8]  S. Buitink,et al.  Interferometric imaging of intensely radiating negative leaders , 2021, Physical Review D.

[9]  E. Fiori,et al.  Cloud-to-Ground lightning nowcasting using Machine Learning , 2021, International Conference on Logic Programming.

[10]  Manzhu Yu,et al.  Lightning Strike Location Identification Based on 3D Weather Radar Data , 2021, Frontiers in Environmental Science.

[11]  Lingxiao Wang,et al.  Detecting the chiral magnetic effect via deep learning , 2021, Physical Review C.

[12]  S. Buitink,et al.  Time resolved 3D interferometric imaging of a section of a negative leader with LOFAR , 2021, Physical Review D.

[13]  Lijia Jiang,et al.  Deep learning stochastic processes with QCD phase transition , 2021, Physical Review D.

[14]  S. Buitink,et al.  The Initial Stage of Cloud Lightning Imaged in High‐Resolution , 2021, Journal of Geophysical Research: Atmospheres.

[15]  H. Edens,et al.  Dart‐Leader and K‐Leader Velocity From Initiation Site to Termination Time‐Resolved With 3D Interferometry , 2020, Journal of Geophysical Research: Atmospheres.

[16]  Kai Zhou,et al.  Machine learning spatio-temporal epidemiological model to evaluate Germany-county-level COVID-19 risk , 2020, Mach. Learn. Sci. Technol..

[17]  Samuel Lalmuanawma,et al.  Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review , 2020, Chaos, Solitons & Fractals.

[18]  K. Zhou,et al.  Continuous-mixture Autoregressive Networks for efficient variational calculation of many-body systems , 2020, 2005.04857.

[19]  J. Dwyer,et al.  Radio Emission Reveals Inner Meter-Scale Structure of Negative Lightning Leader Steps. , 2020, Physical review letters.

[20]  J. Carrasquilla Machine learning for quantum matter , 2020, 2003.11040.

[21]  D. Bourilkov Machine and deep learning applications in particle physics , 2019, International Journal of Modern Physics A.

[22]  S. Cummer,et al.  Needles and Lightning Leader Dynamics Imaged with 100–200 MHz Broadband VHF Interferometry , 2019, Geophysical Research Letters.

[23]  F. Rachidi,et al.  Nowcasting lightning occurrence from commonly available meteorological parameters using machine learning techniques , 2019, npj Climate and Atmospheric Science.

[24]  J. Dwyer,et al.  Needle-like structures discovered on positively charged lightning branches , 2019, Nature.

[25]  Naftali Tishby,et al.  Machine learning and the physical sciences , 2019, Reviews of Modern Physics.

[26]  L. Pang,et al.  Regressive and generative neural networks for scalar field theory , 2018, Physical Review D.

[27]  M. Caffrey,et al.  Broadband RF Interferometric Mapping and Polarization (BIMAP) Observations of Lightning Discharges: Revealing New Physics Insights Into Breakdown Processes , 2018, Journal of Geophysical Research: Atmospheres.

[28]  Eli Upfal,et al.  Machine Learning in High Energy Physics Community White Paper , 2018, Journal of Physics: Conference Series.

[29]  Joaquin F. Rodriguez-Nieva,et al.  Identifying topological order through unsupervised machine learning , 2018, Nature Physics.

[30]  David J. Schwab,et al.  A high-bias, low-variance introduction to Machine Learning for physicists , 2018, Physics reports.

[31]  H. Stöcker,et al.  An equation-of-state-meter of quantum chromodynamics transition from deep learning , 2018, Nature Communications.

[32]  Hans-Peter Kriegel,et al.  DBSCAN Revisited, Revisited , 2017, ACM Trans. Database Syst..

[33]  X. Qie,et al.  Upward negative leaders in positive triggered lightning: Stepping and branching in the initial stage , 2017 .

[34]  Xiushu Qie,et al.  High‐speed video observation of stepwise propagation of a natural upward positive leader , 2016 .

[35]  M. D. Tran,et al.  Initiation and propagation of cloud-to-ground lightning observed with a high-speed video camera , 2016, Scientific Reports.

[36]  Martin Wattenberg,et al.  How to Use t-SNE Effectively , 2016 .

[37]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[38]  Yang Zhang,et al.  Observations of narrow bipolar events reveal how lightning is initiated in thunderstorms , 2016, Nature Communications.

[39]  Jingzhou Liu,et al.  Visualizing Large-scale and High-dimensional Data , 2016, WWW.

[40]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[41]  M. Stock,et al.  Continuous broadband digital interferometry of lightning using a generalized cross‐correlation algorithm , 2014 .

[42]  Harald E. Edens,et al.  Photographic observations of streamers and steps in a cloud‐to‐air negative leader , 2014 .

[43]  J. Dwyer,et al.  The physics of lightning , 2014 .

[44]  G. Parisi,et al.  Scale-free correlations in starling flocks , 2009, Proceedings of the National Academy of Sciences.

[45]  Nobuyuki Takagi,et al.  Spatial and temporal properties of optical radiation produced by stepped leaders , 1999 .

[46]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .