Guidelines for Genome-Scale Analysis of Biological Rhythms

Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding “big data” that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them.

Jason P. DeBruyne | Dmitri A. Nusinow | Christy M. Hoffmann | J. Harer | H. Herzel | A. Sehgal | Kai-Florian Storch | C. Weitz | J. Hogenesch | K. Esser | H. Wijnen | F. Naef | T. Mockler | M. F. Ceriani | M. Nitabach | R. Anafi | D. Skene | D. Gatfield | Ying-Hui Fu | A. Sancar | M. Merrow | L. Ptáček | T. Roenneberg | G. Duffield | J. Hurley | J. Loros | L. Francey | M. Ruben | S. Harmer | P. Westermark | K. Kornacker | E. Nagoshi | J. Menet | S. Sherrill-Mix | A. B. Arpat | Tomasz Zieliński | N. Koike | Seung-Hee Yoo | Han Wang | Gang Wu | Samuel S. C. Rund | Aziz Sancar | Martha Merrow | S. Yoo | Joseph S. Takahashi | Michael E. Hughes | Katherine C. Abruzzi | Ravi Allada | Gad Asher | Pierre Baldi | Charissa de Bekker | Deborah Bell-Pedersen | Justin Blau | Steve Brown | Zheng Chen | Joanna C. Chiu | Juergen Cox | Alexander M. Crowell | Derk-Jan Dijk | Luciano DiTacchio | Francis J. Doyle | Jay Dunlap | Kristin Eckel-Mahan | Garret A Fitzgerald | Daniel B. Forger | Frédéric Gachon | P. D. Goede | Susan S. Golden | C. B. Green | Jeff Haspel | Michael H. Hastings | Erik D. Herzog | Christy Hoffmann | Christian I. Hong | Jacob J. Hughey | Horacio O. de la Iglesia | Carl Hirschie Johnson | Steve A. Kay | Achim Kramer | Katja A. Lamia | T. L. Leise | Scott A. Lewis | Jiajia Li | Xiaodong Li | Andrew C. Liu | Tami A. Martino | A. J. Millar | María Teresa Camacho Olmedo | David A. Rand | Akhilesh B. Reddy | Maria S. Robles | M. Rosbash | P. Sassone-Corsi | Hiroki R. Ueda | Ying Xu | Michael W. Young | Eric E. Zhang | David A. Rand | Nobuya Koike | Debra J. Skene | Andrew J. Millar | Michael W. Young | Jay C. Dunlap | D. Bell-Pedersen | Susan S. Golden | Michael Rosbash | Karyn A. Esser | Jacob J. Hughey | Andrew C. Liu | Katherine C. Abruzzi | Ravi Allada | Gad Asher | Pierre Baldi | Charissa de Bekker | Justin Blau | Steve Brown | Zheng Chen | Joanna C. Chiu | Juergen Cox | Alexander M. Crowell | Luciano DiTacchio | Francis J. Doyle | Frédéric Gachon | Jeff Haspel | Michael H. Hastings | Erik D. Herzog | Christian I. Hong | Jennifer M. Hurley | Katja A. Lamia | Scott A. Lewis | Xiaodong Li | Tami A. Martino | Maria S. Robles | Hiroki R. Ueda | Han Wang | Ying Xu | Eric E. Zhang

[1]  S. Mirarab,et al.  Sequence Analysis , 2020, Encyclopedia of Bioinformatics and Computational Biology.

[2]  U. Schibler,et al.  Diurnal Oscillations in Liver Mass and Cell Size Accompany Ribosome Assembly Cycles , 2017, Cell.

[3]  J. Hughey Machine learning identifies a compact gene set for monitoring the circadian clock in human blood , 2017, Genome Medicine.

[4]  C. Möller-Levet,et al.  Blood transcriptome based biomarkers for human circadian phase , 2017, eLife.

[5]  M. Gerkema,et al.  Unmasking ultradian rhythms in gene expression , 2016, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[6]  Pål O. Westermark,et al.  Differential rhythmicity: detecting altered rhythmicity in biological data , 2016, Bioinform..

[7]  Maxim N. Artyomov,et al.  End Sequence Analysis Toolkit (ESAT) expands the extractable information from single-cell RNA-seq data , 2016, Genome research.

[8]  Babak Shahbaba,et al.  What time is it? Deep learning approaches for circadian rhythms , 2016, Bioinform..

[9]  Christian I. Hong,et al.  Finding Clocks in Genes: A Bayesian Approach to Estimate Periodicity , 2016, BioMed research international.

[10]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[11]  A. Podtelezhnikov,et al.  Discovering Biology in Periodic Data through Phase Set Enrichment Analysis (PSEA) , 2016, Journal of biological rhythms.

[12]  Thomas Lengauer,et al.  ISCB’s Initial Reaction to The New England Journal of Medicine Editorial on Data Sharing , 2016, PLoS Comput. Biol..

[13]  Gang Wu,et al.  MetaCycle: an integrated R package to evaluate periodicity in large scale data , 2016, bioRxiv.

[14]  Thomas Lengauer,et al.  ISCB’s initial reaction to New England Journal of Medicine editorial on data sharing , 2016, Bioinform..

[15]  Trevor Hastie,et al.  ZeitZeiger: supervised learning for high-dimensional data from an oscillatory system , 2016, Nucleic acids research.

[16]  Mark D. Robinson,et al.  Isoform prefiltering improves performance of count-based methods for analysis of differential transcript usage , 2016, Genome Biology.

[17]  D. Gatfield,et al.  Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames , 2015, Genome research.

[18]  Gregory Lefebvre,et al.  Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver , 2015, Proceedings of the National Academy of Sciences.

[19]  Stephen Hartley,et al.  QoRTs: a comprehensive toolset for quality control and data processing of RNA-Seq experiments , 2015, BMC Bioinformatics.

[20]  Neil Bahroos,et al.  Improved Statistical Methods Enable Greater Sensitivity in Rhythm Detection for Genome-Wide Data , 2015, PLoS Comput. Biol..

[21]  D. Golombek,et al.  Potential Conservation of Circadian Clock Proteins in the phylum Nematoda as Revealed by Bioinformatic Searches , 2014, PloS one.

[22]  M. Hughes,et al.  A circadian gene expression atlas in mammals: Implications for biology and medicine , 2014, Proceedings of the National Academy of Sciences.

[23]  Pål O. Westermark,et al.  Detecting Rhythms in Time Series with RAIN , 2014, Journal of biological rhythms.

[24]  Zhang Zhang,et al.  Evaluation of Five Methods for Genome-Wide Circadian Gene Identification , 2014, Journal of biological rhythms.

[25]  Lauren M McIntyre,et al.  Leveraging biological replicates to improve analysis in ChIP-seq experiments , 2014, Computational and structural biotechnology journal.

[26]  Steven B. Haase,et al.  Design and analysis of large-scale biological rhythm studies: a comparison of algorithms for detecting periodic signals in biological data , 2013, Bioinform..

[27]  M. Rosbash,et al.  Nascent-Seq reveals novel features of mouse circadian transcriptional regulation , 2012, eLife.

[28]  K. Gunsalus,et al.  Electrical Activity Can Impose Time of Day on the Circadian Transcriptome of Pacemaker Neurons , 2012, Current Biology.

[29]  J. Takahashi,et al.  Transcriptional Architecture and Chromatin Landscape of the Core Circadian Clock in Mammals , 2012, Science.

[30]  J. Blau,et al.  A Mechanism for Circadian Control of Pacemaker Neuron Excitability , 2012, Journal of biological rhythms.

[31]  Marc D. Perry,et al.  ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia , 2012, Genome research.

[32]  Ramón Doallo,et al.  CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics , 2012, Nature Methods.

[33]  Daniel MacArthur,et al.  Methods: Face up to false positives , 2012, Nature.

[34]  Mark Stitt,et al.  RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics , 2012, Nucleic Acids Res..

[35]  Michael E Hughes,et al.  Deep sequencing the circadian and diurnal transcriptome of Drosophila brain , 2012, Genome research.

[36]  S. Kay,et al.  Cell-autonomous hepatic circadian clock regulates polyamine synthesis , 2012, Cell cycle.

[37]  M. Hughes,et al.  Age-Associated Disruption of Molecular Clock Expression in Skeletal Muscle of the Spontaneously Hypertensive Rat , 2011, PloS one.

[38]  A. Sehgal,et al.  The circadian clock interacts with metabolic physiology to influence reproductive fitness. , 2011, Cell metabolism.

[39]  Karl Kornacker,et al.  JTK_CYCLE: An Efficient Nonparametric Algorithm for Detecting Rhythmic Components in Genome-Scale Data Sets , 2010, Journal of biological rhythms.

[40]  Zhen Su,et al.  Analyzing circadian expression data by harmonic regression based on autoregressive spectral estimation , 2010, Bioinform..

[41]  Satchidananda Panda,et al.  Harmonics of Circadian Gene Transcription in Mammals , 2009, PLoS genetics.

[42]  Michael F. Covington,et al.  Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development , 2008, Genome Biology.

[43]  Kevin P. Keegan,et al.  Meta-Analysis of Drosophila Circadian Microarray Studies Identifies a Novel Set of Rhythmically Expressed Genes , 2007, PLoS Comput. Biol..

[44]  G. Eichele,et al.  Transcriptional Profiling in the Adrenal Gland Reveals Circadian Regulation of Hormone Biosynthesis Genes and Nucleosome Assembly Genes , 2006, Journal of biological rhythms.

[45]  Adam Claridge‐Chang,et al.  Control of Daily Transcript Oscillations in Drosophila by Light and the Circadian Clock , 2006, PLoS genetics.

[46]  Earl F. Glynn,et al.  Detecting periodic patterns in unevenly spaced gene expression time series using Lomb-Scargle periodograms , 2006, Bioinform..

[47]  Shuguang Huang,et al.  Comparison of false discovery rate methods in identifying genes with differential expression. , 2005, Genomics.

[48]  John D. Storey,et al.  Significance analysis of time course microarray experiments. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[49]  S. Golden,et al.  Circadian orchestration of gene expression in cyanobacteria. , 1995, Genes & development.

[50]  Ulrich Schibler,et al.  Cell size regulation, a mechanism that controls cellular RNA accumulation: consequences on regulation of the ubiquitous transcription factors Oct1 and NF-Y and the liver-enriched transcription factor DBP , 1995, The Journal of cell biology.

[51]  Y. Benjamini,et al.  More powerful procedures for multiple significance testing. , 1990, Statistics in medicine.

[52]  A. J. Carlson THE FEDERATION OF AMERICAN SOCIETIES FOR EXPERIMENTAL BIOLOGY. , 1914, Science.

[53]  M. Hughes,et al.  Considerations for RNA-seq analysis of circadian rhythms. , 2015, Methods in enzymology.

[54]  Connor W. McEntee,et al.  The DIURNAL project: DIURNAL and circadian expression profiling, model-based pattern matching, and promoter analysis. , 2007, Cold Spring Harbor symposia on quantitative biology.

[55]  M. Hughes,et al.  High-resolution time course analysis of gene expression from pituitary. , 2007, Cold Spring Harbor symposia on quantitative biology.

[56]  Felix Naef,et al.  Molecular and statistical tools for circadian transcript profiling. , 2005, Methods in enzymology.

[57]  Martin Straume,et al.  DNA Microarray Time Series Analysis: Automated Statistical Assessment of Circadian Rhythms in Gene Expression Patterning , 2004, Numerical Computer Methods, Part D.