Forecasts of butterfly future richness change in the southwest Mediterranean. The role of sampling effort and non-climatic variables

[1]  J. Lobo,et al.  Are patterns of sampling effort and completeness of inventories congruent? A test using databases for five insect taxa in the Iberian Peninsula , 2022, Insect Conservation and Diversity.

[2]  J. Lobo,et al.  Connecting protected areas in the Iberian peninsula to facilitate climate change tracking , 2021, Environmental Conservation.

[3]  M. Munguira,et al.  Butterfly communities track climatic variation over space but not time in the Iberian Peninsula , 2021, Insect Conservation and Diversity.

[4]  J. Lobo,et al.  How complete are insect inventories? An assessment of the british butterfly database highlighting the influence of dynamic distribution shifts on sampling completeness , 2021, Biodiversity and Conservation.

[5]  H. Van Dyck,et al.  The decline of butterflies in Europe: Problems, significance, and possible solutions , 2021, Proceedings of the National Academy of Sciences.

[6]  V. Dakos,et al.  Biotic homogenisation in bird communities leads to large-scale changes in species associations , 2020, Oikos.

[7]  R. Fox,et al.  Insect responses to global change offer signposts for biodiversity and conservation , 2020 .

[8]  A. Traveset,et al.  Spatio‐temporal responses of butterflies to global warming on a Mediterranean island over two decades , 2020 .

[9]  J. Hortal,et al.  Assessing spatial and temporal biases and gaps in the publicly available distributional information of Iberian mosses , 2020, Biodiversity data journal.

[10]  N. Isaac,et al.  Complex long-term biodiversity change among invertebrates, bryophytes and lichens , 2020, Nature Ecology & Evolution.

[11]  N. Stork,et al.  Scientists' warning to humanity on insect extinctions , 2020, Biological Conservation.

[12]  C. Stefanescu,et al.  Vegetation encroachment drives changes in the composition of butterfly assemblages and species loss in Mediterranean ecosystems , 2020 .

[13]  P. Ehrlich Biodiversity and Climate Change: Transforming the Biosphere. Edited by Thomas E. Lovejoy and Lee Hannah; Foreword by Edward O. Wilson. New Haven (Connecticut): Yale University Press. $40.00. xv + 387 p. + 8 pl.; ill.; index. ISBN: 978-0-300-20611-1. 2019. , 2019 .

[14]  I. Steffan‐Dewenter,et al.  Understanding extinction debts: spatio–temporal scales, mechanisms and a roadmap for future research , 2019, Ecography.

[15]  D. Sánchez‐Fernández,et al.  Use of satellite images to characterize the spatio-temporal dynamics of primary productivity in hotspots of endemic Iberian butterflies , 2019, Ecological Indicators.

[16]  T. Hickler,et al.  A comparison of macroecological and stacked species distribution models to predict future global terrestrial vertebrate richness , 2019, Journal of Biogeography.

[17]  L. Brotóns,et al.  Contrasting impacts of precipitation on Mediterranean birds and butterflies , 2019, Scientific Reports.

[18]  Emmanuel Paradis,et al.  ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R , 2018, Bioinform..

[19]  J. Gila Estimación del hábitat potencial de "Satyrium w-album (Knoch, 1782) en la Península Ibérica y predicción de los efectos del cambio climático en su distribución para los años 2050 y 2070 (Lepidoptera: Lycaenidae) , 2019 .

[20]  K. Calvin,et al.  Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century , 2018, Geoscientific Model Development.

[21]  J. Lobo,et al.  Completeness of national freshwater fish species inventories around the world , 2018, Biodiversity and Conservation.

[22]  J. Lobo,et al.  KnowBR: An application to map the geographical variation of survey effort and identify well-surveyed areas from biodiversity databases , 2018, Ecological Indicators.

[23]  Tom A. August,et al.  Extinction risk from climate change is reduced by microclimatic buffering , 2018, Nature Climate Change.

[24]  J. Lobo,et al.  Effectiveness of the Natura 2000 network in protecting Iberian endemic fauna , 2018 .

[25]  J. Lobo,et al.  Environmental representativeness and the role of emitter and recipient areas in the future trajectory of a protected area under climate change , 2018 .

[26]  Wilfried Thuiller,et al.  The need for large‐scale distribution data to estimate regional changes in species richness under future climate change , 2017 .

[27]  R. Real,et al.  Predictor weighting and geographical background delimitation: two synergetic sources of uncertainty when assessing species sensitivity to climate change , 2017, Climatic Change.

[28]  Stephen E. Fick,et al.  WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas , 2017 .

[29]  H. Resit Akçakaya,et al.  Predicting and mitigating future biodiversity loss using long-term ecological proxies , 2016 .

[30]  Patrick A. Zollner,et al.  Improving the forecast for biodiversity under climate change , 2016, Science.

[31]  C. Stefanescu,et al.  General declines in Mediterranean butterflies over the last two decades are modulated by species traits , 2016 .

[32]  B. G. Perez-Schofield,et al.  FactorsR: An RWizard Application for Identifying the Most Likely Causal Factors in Controlling Species Richness , 2015 .

[33]  R. Julliard,et al.  REVIEW: Predictive ecology in a changing world , 2015 .

[34]  L. Brotóns,et al.  Assessing impacts of land abandonment on Mediterranean biodiversity using indicators based on bird and butterfly monitoring data , 2015, Environmental Conservation.

[35]  D. Gutiérrez,et al.  Long‐term change and spatial variation in butterfly communities over an elevational gradient: driven by climate, buffered by habitat , 2015 .

[36]  G. Langham,et al.  Stacked species distribution models and macroecological models provide congruent projections of avian species richness under climate change , 2015 .

[37]  P. Beier,et al.  Conserving Biodiversity: Practical Guidance about Climate Change Adaptation Approaches in Support of Land-use Planning , 2015 .

[38]  Owen L. Petchey,et al.  The ecological forecast horizon, and examples of its uses and determinants , 2015, bioRxiv.

[39]  R. Julliard,et al.  Predictive ecology in a changing world , 2015 .

[40]  Raimundo Real,et al.  Effects of climate change on the distribution of ecologically interacting species: butterflies and their main food plants in Spain , 2014 .

[41]  T. Brereton,et al.  Latitudinal gradients in butterfly population variability are influenced by landscape heterogeneity , 2014 .

[42]  M. Belda,et al.  Climate classification revisited: from Köppen to Trewartha , 2014 .

[43]  J. Calabrese,et al.  Stacking species distribution models and adjusting bias by linking them to macroecological models , 2014 .

[44]  N. Pettorelli,et al.  Essential Biodiversity Variables , 2013, Science.

[45]  Damaris Zurell,et al.  Collinearity: a review of methods to deal with it and a simulation study evaluating their performance , 2013 .

[46]  J. Lobo,et al.  The performance of range maps and species distribution models representing the geographic variation of species richness at different resolutions , 2012 .

[47]  F. Jiguet,et al.  Differences in the climatic debts of birds and butterflies at a continental scale , 2012 .

[48]  T. Hickler,et al.  Increasing range mismatching of interacting species under global change is related to their ecological characteristics , 2012 .

[49]  Antoine Guisan,et al.  SESAM – a new framework integrating macroecological and species distribution models for predicting spatio‐temporal patterns of species assemblages , 2011 .

[50]  J. Peñuelas,et al.  Determinants of species richness in generalist and specialist Mediterranean butterflies: the negative synergistic forces of climate and habitat change , 2011 .

[51]  C. Ricotta,et al.  Accounting for uncertainty when mapping species distributions: The need for maps of ignorance , 2011 .

[52]  Y. Wiersma,et al.  Predictive species and habitat modeling in landscape ecology : concepts and applications , 2011 .

[53]  M. Kulkarni,et al.  Integrating Theory and Predictive Modeling for Conservation Research , 2011 .

[54]  B. Huntley,et al.  Habitat microclimates drive fine‐scale variation in extreme temperatures , 2011 .

[55]  Can Species Richness Patterns Be Interpolated From a Limited Number of Well-Known Areas? Mapping Diversity Using GLM and Kriging , 2011 .

[56]  I. Maclean,et al.  Recent evidence for the climate change threat to Lepidoptera and other insects , 2011, Journal of Insect Conservation.

[57]  Sanford Weisberg,et al.  An R Companion to Applied Regression , 2010 .

[58]  J. Lobo,et al.  Predicted impact of climate change on threatened terrestrial vertebrates in central Spain highlights differences between endotherms and ectotherms , 2010 .

[59]  T. Rangel,et al.  SAM: a comprehensive application for Spatial Analysis in Macroecology , 2010 .

[60]  Mathieu Marmion,et al.  Inclusion of soil data improves the performance of bioclimatic envelope models for insect species distributions in temperate Europe , 2009 .

[61]  J. Lobo,et al.  Taxonomist survey biases and the unveiling of biodiversity patterns , 2009 .

[62]  F. Giorgi,et al.  Climate change projections for the Mediterranean region , 2008 .

[63]  E. Hertig,et al.  Downscaling future climate change: Temperature scenarios for the Mediterranean area , 2008 .

[64]  J. Lobo,et al.  Regional and environmental effects on the species richness of mammal assemblages , 2008 .

[65]  G. Malanson Extinction debt: origins, developments, and applications of a biogeographical trope , 2008 .

[66]  J. Lobo,et al.  Historical bias in biodiversity inventories affects the observed environmental niche of the species , 2008 .

[67]  J. Hanspach,et al.  Climatic Risk Atlas of European Butterflies , 2008 .

[68]  M. Luoto,et al.  Disregarding topographical heterogeneity biases species turnover assessments based on bioclimatic models , 2008 .

[69]  Robert J. Wilson,et al.  An elevational shift in butterfly species richness and composition accompanying recent climate change , 2007 .

[70]  Alberto Jiménez-Valverde,et al.  Limitations of Biodiversity Databases: Case Study on Seed‐Plant Diversity in Tenerife, Canary Islands , 2007, Conservation biology : the journal of the Society for Conservation Biology.

[71]  S. Andelman,et al.  Protected area needs in a changing climate , 2007 .

[72]  David R. B. Stockwell,et al.  Forecasting the Effects of Global Warming on Biodiversity , 2007 .

[73]  M. Munguira,et al.  Area selection for the conservation of butterflies in the Iberian Peninsula and Balearic Islands , 2007, Animal Biodiversity and Conservation.

[74]  Jorge M. Lobo,et al.  Identifying recorder-induced geographic bias in an Iberian butterfly database , 2006 .

[75]  P. Legendre,et al.  Variation partitioning of species data matrices: estimation and comparison of fractions. , 2006, Ecology.

[76]  Miguel B. Araújo,et al.  Geographical gradients of species richness: a test of the water‐energy conjecture of Hawkins et al. (2003) using European data for five taxa , 2006 .

[77]  M. Araújo,et al.  How Does Climate Change Affect Biodiversity? , 2006, Science.

[78]  R. Alkemade,et al.  Impacts of land-use change on biodiversity: An assessment of agricultural biodiversity in the European Union , 2006 .

[79]  W. Thuiller,et al.  Predicting species distribution: offering more than simple habitat models. , 2005, Ecology letters.

[80]  J. Hortal,et al.  Butterfly species richness in mainland Portugal: predictive models of geographic distribution patterns , 2004 .

[81]  R. Dennis,et al.  Bias in Butterfly Distribution Maps: The Influence of Hot Spots and Recorder's Home Range , 2000, Journal of Insect Conservation.

[82]  B. A. Hawkins,et al.  Water–energy balance and the geographic pattern of species richness of western Palearctic butterflies , 2003 .

[83]  Richard Field,et al.  ENERGY, WATER, AND BROAD‐SCALE GEOGRAPHIC PATTERNS OF SPECIES RICHNESS , 2003 .

[84]  J. Diniz‐Filho,et al.  Spatial autocorrelation and red herrings in geographical ecology , 2003 .

[85]  Pierre Jay-Robert,et al.  Modelling the species richness distribution of French dung beetles (Coleoptera, Scarabaeidae) and delimiting the predictive capacity of different groups of explanatory variables , 2002 .

[86]  R. Whittaker,et al.  Scale and species richness: towards a general, hierarchical theory of species diversity , 2001 .

[87]  Antoine Guisan,et al.  Predictive habitat distribution models in ecology , 2000 .

[88]  R. B. Jackson,et al.  Global biodiversity scenarios for the year 2100. , 2000, Science.

[89]  R. Mittermeier,et al.  Biodiversity hotspots for conservation priorities , 2000, Nature.

[90]  H. J. B. Birks,et al.  Statistical approaches to interpreting diversity patterns in the Norwegian mountain flora , 1996 .

[91]  G. Monette,et al.  Generalized Collinearity Diagnostics , 1992 .

[92]  H. Aschmann Distribution and Peculiarity of Mediterranean Ecosystems , 1973 .