Motion planning in velocity affine mechanical systems

We address the motion planning problem in specific mechanical systems whose linear and angular velocities depend affinely on control. The configuration space of these systems encompasses the rotation group, and the motion planning involves the system orientation. Derivation of the motion planning algorithm for velocity affine systems has been inspired by the continuation method. Performance of this algorithm is illustrated with examples of the kinematics of a serial nonholonomic manipulator, the plate-ball kinematics and the attitude control of a rigid body.

[1]  Alicja Mazur,et al.  Trajectory tracking control in workspace-defined tasks for nonholonomic mobile manipulators , 2009, Robotica.

[2]  François Alouges,et al.  A motion planning algorithm for the rolling-body problem , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[3]  Woojin Chung,et al.  Design and control of the nonholonomic manipulator , 2001, IEEE Trans. Robotics Autom..

[4]  Krzysztof Tchon,et al.  On Dynamic Properties of Singularity Robust Jacobian Inverse Kinematics , 2009, IEEE Transactions on Automatic Control.

[5]  Y. Chitour A continuation method for motion-planning problems , 2006 .

[6]  Krzysztof Tchoń,et al.  Endogenous configuration space approach to mobile manipulators: A derivation and performance assessment of Jacobian inverse kinematics algorithms , 2003 .

[7]  L. Dai,et al.  Non-holonomic Kinematics and the Role of Elliptic Functions in Constructive Controllability , 1993 .

[8]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[9]  H. Sussmann,et al.  A continuation method for nonholonomic path-finding problems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[10]  John T. Wen,et al.  A path space approach to nonholonomic motion planning in the presence of obstacles , 1997, IEEE Trans. Robotics Autom..

[11]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[12]  Raffaele Di Gregorio,et al.  Generation of Under-Actuated Manipulators With Nonholonomic Joints From Ordinary Manipulators , 2010 .

[13]  Velimir Jurdjevic The geometry of the plate-ball problem , 1993 .

[14]  J. M. Selig Geometric Fundamentals of Robotics , 2004, Monographs in Computer Science.

[15]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[16]  T. Ważewski,et al.  Sur l'évaluation du domaine d'existence des fonctions implicites réelles ou complexes , 1948 .

[17]  Federico Thomas,et al.  A Nonholonomic 3-DOF Parallel Robot , 2008 .