A New Risk Assessment Model for Underground Mine Water Inrush Based on AHP and D–S Evidence Theory

Effective risk assessment of underground water inrush is the prerequisite and basis for mine water hazard control and safe mining. An inrush risk assessment system was set up, based on a comprehensive analysis of the factors of mine water inrush risk and improved analytic hierarchy process (AHP). A new judgment matrix was constructed based on a scale of 1–9. The Dempster-Shafer (D–S) synthetic rule was improved on the basis of improved AHP; the frame of discernment proposed includes water-inrush, critical condition, and no water-inrush. A water-inrush integration decision-making model was thus established. Finally, using a typical underground mine in China, the new model was verified using this method. The probability of water inrush was 0.822, which is broadly in line with the actual situation, indicating that the model is feasible and applicable.ZusammenfassungEine effective Risikoeinschätzung für untertägige Wassereinbrüche ist die Voraussetzung und Basis der Kontrolle von Bergwassergefahren und für sicheren Bergbau. Ein System der Einbruchsrisikoeinschätzung wurde erstellt, basierend auf einer umfassenden Analyse der Faktoren von Wassereinbruchsrisiken und einem verbesserten analytischen Hierarchieprozess (AHP). Eine neue Beurteilungsmatrix mit einem Maßstab von 1-9 wurde konstruiert. Basierend auf dem verbesserten AHP, wurde die synthetische Dempster-Shafer (D-S) Regel verbessert. Der vorgeschlagene Urteilsrahmen umfaßt Wassereinbruch, kritische Bedingungen, und kein Wassereinbruch. Damit waren Entscheidungen möglich. Unter Nutzung einer typischen Untertagemine in China wurde schließlich das Modell verifiziert. Die Wahrscheinlichkeit eines Wassereinbruchs war 0.822, mit der tatsächlichen Situation etwa übereinstimmend. Somit war das Modell als machbar und anwendbar bezeugt.ResumenLa evaluación efectiva del riesgo de la irrupción de agua subterránea es el requisito previo y la base para el control de los riesgos del agua de la mina y de la seguridad de la minería. Se estableció un sistema de evaluación de riesgo de irrupción, basado en un análisis exhaustivo de los factores del riesgo de entrada de agua de la mina y el proceso mejorado de jerarquía analítica (AHP). Se construyó una nueva matriz de juicio basada en una escala de 1-9. La regla sintética de Dempster-Shafer (D-S) se mejoró sobre la base de la mejora de AHP; el marco de discernimiento propuesto incluye irrupción de agua, condición crítica y no irrupción de agua. De este modo se estableció un modelo de toma de decisiones de integración de la irrupción de agua. Finalmente, utilizando una mina subterránea típica en China, el nuevo modelo se verificó utilizando este método. La probabilidad de entrada de agua fue de 0,822, lo que está en línea con la situación actual indicando que el modelo es factible y aplicable.抽象有效的矿井突水危险性评价是矿井水害防治和安全开采的前提与基础。基于矿井突水危险因素综合分析和改进的层次分析法(AHP),建立了矿井突水危险性评价系统。用1-9 标度法构造了一个新的判断矩阵。在改进的AHP 基础上,进一步改进Dempster-Shafer (D-S)合成规则,建立由突水、临界和不突水组成的识别框架,构建了突水综合决策模型。以中国一个典型的地下煤矿为例,验证了该模型;突水概率为0.822,与实际情况吻合,证明了该模型的可行性和适用性。

[1]  Ma Jun,et al.  A New Dynamic Assessment for Multi-parameters Information of Water Inrush in Coal Mine*☆ , 2012 .

[2]  Jianlin Li,et al.  Application of BP neural network to determine of mine water inrush sources based on Matlab , 2011, 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC).

[3]  Qiu Wan-hua Research on consistency test and modification approach of fuzzy judgement matrix , 2009 .

[4]  T. Saaty How to Make a Decision: The Analytic Hierarchy Process , 1990 .

[5]  Catherine K. Murphy Combining belief functions when evidence conflicts , 2000, Decis. Support Syst..

[6]  Qiang Wu,et al.  Evaluation of a coal seam roof water inrush: case study in the Wangjialing coal mine, China , 2018, Mine Water and the Environment.

[7]  Shun-Feng Li Prediction for Damage Depth of Coal Seam Floor Based on the BP Neural Network , 2015 .

[8]  R. Yager On the dempster-shafer framework and new combination rules , 1987, Inf. Sci..

[9]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[10]  Thomas L. Saaty,et al.  Multicriteria Decision Making: The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation , 1990 .

[11]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[12]  Bo Li,et al.  Risk Assessment of Coal Floor Water Inrush from Underlying Aquifers Based on GRA–AHP and Its Application , 2016, Geotechnical and Geological Engineering.

[13]  Cheng Zhen-zhen The Application of D-S Evidence Theory in Coal Mine Flood Prediction , 2008 .

[14]  Ruyin Long,et al.  Research on 10-year tendency of China coal mine accidents and the characteristics of human factors ☆ , 2012 .

[15]  Wanfang Zhou,et al.  Application of the Analytic Hierarchy Process to Assessment of Water Inrush: A Case Study for the No. 17 Coal Seam in the Sanhejian Coal Mine, China , 2013, Mine Water and the Environment.

[16]  Zhao Jia-bao,et al.  Research on Compatibility of Fuzzy Judgement Matrices , 2004 .

[17]  Rolf Haenni,et al.  Are alternatives to Dempster's rule of combination real alternatives?: Comments on "About the belief function combination and the conflict management problem" - Lefevre et al , 2002, Inf. Fusion.

[18]  Wei Tao Liu,et al.  Risk Evaluation of Water Inrush from Coal Floor Based on BP Neural Network , 2015 .

[19]  S. Mahadevan,et al.  Dependence Assessment in Human Reliability Analysis Using Evidence Theory and AHP , 2015, Risk analysis : an official publication of the Society for Risk Analysis.

[20]  Liu Qisheng A discussion on water inrush coefficient , 2009 .

[21]  Li-ping Li,et al.  An Attribute Synthetic Evaluation System for Risk Assessment of Floor Water Inrush in Coal Mines , 2015, Mine Water and the Environment.

[22]  Ying Zhou,et al.  Coordination of Generation and Transmission Planning for Power System with Large Wind Farms , 2012 .

[23]  Mei Qiu,et al.  Assessment of Water Inrush Risk Using the Fuzzy Delphi Analytic Hierarchy Process and Grey Relational Analysis in the Liangzhuang Coal Mine, China , 2017, Mine Water and the Environment.

[24]  Ming Li,et al.  Risk assessment of floor water inrush in coal mines based on secondary fuzzy comprehensive evaluation , 2012 .

[25]  Wu Sheng,et al.  Prediction of Water Inrush from Coal Floor Based on Small Sample Data Mining Technology and Realization Using MATLAB , 2012, J. Softw..