Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine

[1]  Pulickel M. Ajayan,et al.  Carbon nanotube electrode for oxidation of dopamine , 1996 .

[2]  T. Ohsaka,et al.  Electroanalysis of ascorbate and dopamine at a gold electrode modified with a positively charged self-assembled monolayer , 2001 .

[3]  Juhyoun Kwak,et al.  Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles , 2001, Nature.

[4]  Z. Gu,et al.  Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. , 2001, Analytical chemistry.

[5]  Protiva Rani Roy,et al.  Simultaneous electroanalysis of dopamine and ascorbic acid using poly (N,N-dimethylaniline)-modified electrodes. , 2003, Bioelectrochemistry.

[6]  Mark R. Anderson,et al.  Dopamine Adsorption at Surface Modified Carbon-Fiber Electrodes , 2001 .

[7]  R. R. Moore,et al.  Basal plane pyrolytic graphite modified electrodes: comparison of carbon nanotubes and graphite powder as electrocatalysts. , 2004, Analytical chemistry.

[8]  R. McCreery,et al.  In situ laser activation of glassy carbon electrodes , 1986 .

[9]  R. Wightman,et al.  Response times of carbon fiber microelectrodes to dynamic changes in catecholamine concentration. , 2002, Analytical chemistry.

[10]  Haoshen Zhou,et al.  Electrochemical capacitance of self-ordered mesoporous carbon , 2003 .

[11]  Mietek Jaroniec,et al.  Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure , 2000 .

[12]  Shen-Ming Chen,et al.  Simultaneous voltammetric detection of dopamine and ascorbic acid using didodecyldimethylammonium bromide (DDAB) film-modified electrodes , 2006 .

[13]  Lei Zhang,et al.  Simultaneous determination of dopamine and ascorbic acid at an in-site functionalized self-assembled monolayer on gold electrode , 2004 .

[14]  Richard G Compton,et al.  Abrasive immobilization of carbon nanotubes on a basal plane pyrolytic graphite electrode: application to the detection of epinephrine. , 2004, The Analyst.

[15]  Wen Xu,et al.  Selective determination of dopamine in the presence of ascorbic acid at the carbon atom wire modified electrode , 2005 .

[16]  Alain Walcarius,et al.  Zeolite-modified carbon paste electrode for selective monitoring of dopamine , 1996 .

[17]  M. Hartmann,et al.  Adsorption of vitamin E on mesoporous silica molecular sieves , 2005 .

[18]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[19]  G. Suresh,et al.  Selective determination of dopamine using unmodified, exfoliated graphite electrodes , 2004 .

[20]  Dusan Losic,et al.  Protein electrochemistry using aligned carbon nanotube arrays. , 2003, Journal of the American Chemical Society.

[21]  T. Ohsaka,et al.  Gold nanoparticle arrays for the voltammetric sensing of dopamine , 2003 .

[22]  M. Prato,et al.  Purification of HiPCO carbon nanotubes via organic functionalization. , 2002, Journal of the American Chemical Society.

[23]  Richard S. Nicholson,et al.  Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. , 1965 .

[24]  C. Banks,et al.  New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite. , 2006, The Analyst.

[25]  Jun Liu,et al.  Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid. , 2002, The Analyst.

[26]  M. Rice,et al.  Simultaneous voltammetric and chemical monitoring of dopamine release in situ , 1985, Brain Research.

[27]  Shen-Ming Chen,et al.  Electrocatalysis and simultaneous detection of dopamine and ascorbic acid using poly(3,4-ethylenedioxy)thiophene film modified electrodes , 2006 .

[28]  S. Fletcher,et al.  Nucleation on active sites: Part IV. Invention of an electronic method of counting the number of crystals as a function of time; and the discovery of nucleation rate dispersion , 1988 .

[29]  Chuan-sin Cha,et al.  Detection of dopamine in the presence of a large excess of ascorbic acid by using the powder microelectrode technique , 1999 .

[30]  R. McCreery,et al.  Control of Electron Transfer Kinetics at Glassy Carbon Electrodes by Specific Surface Modification , 1996 .

[31]  J. Rusling,et al.  Electrochemical and electron spectroscopic studies of highly polished glassy carbon electrodes. , 1985, Analytical chemistry.

[32]  S. Kumar,et al.  Exploration of synergism between a polymer matrix and gold nanoparticles for selective determination of dopamine , 2005 .

[33]  K. Ariga,et al.  Biomaterial immobilization in nanoporous carbon molecular sieves: influence of solution pH, pore volume, and pore diameter. , 2005, The journal of physical chemistry. B.

[34]  R. McCreery,et al.  Adsorption of catechols on fractured glassy carbon electrode surfaces , 1992 .