Support vector method for identification of Wiener models

[1]  Tokunbo Ogunfunmi,et al.  Adaptive Nonlinear System Identification: The Volterra and Wiener Model Approaches , 2007 .

[2]  Hannu T. Toivonen,et al.  Identification of state-dependent parameter models with support vector regression , 2007, Int. J. Control.

[3]  Ricardo J. G. B. Campello,et al.  Choice of free parameters in expansions of discrete-time Volterra models using Kautz functions , 2007, Autom..

[4]  M. Isaksson,et al.  A Kautz-Volterra Behavioral Model for RF Power Amplifiers , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[5]  J. Suykens,et al.  Kernel based partially linear models and nonlinear identification , 2005, IEEE Transactions on Automatic Control.

[6]  L. A. Aguirre,et al.  On the interpretation and practice of dynamical differences between Hammerstein and Wiener models , 2005 .

[7]  Johan A. K. Suykens,et al.  Identification of MIMO Hammerstein models using least squares support vector machines , 2005, Autom..

[8]  Enrique Baeyens,et al.  Identification of block-oriented nonlinear systems using orthonormal bases , 2004 .

[9]  J. Sjöberg Neural networks for modelling and control of dynamic systems: M. Nørgaard, O. Ravn, N. K. Poulsen and L. K. Hansen. Springer-Verlag, London Berlin Heidelberg, 2000, pp. xiv+246 , 2004 .

[10]  Chih-Jen Lin,et al.  A study on reduced support vector machines , 2003, IEEE Trans. Neural Networks.

[11]  Ricardo J. G. B. Campello,et al.  Optimal expansions of discrete-time Volterra models using Laguerre functions , 2003, Autom..

[12]  Aarne Halme,et al.  Modeling of chromatographic separation process with Wiener-MLP representation , 2001 .

[13]  Shuichi Adachi,et al.  A New System Identification Method Based on Support Vector Machines , 2001 .

[14]  R. Pearson,et al.  Gray-box identification of block-oriented nonlinear models , 2000 .

[15]  Håkan Hjalmarsson,et al.  The fundamental role of general orthonormal bases in system identification , 1999, IEEE Trans. Autom. Control..

[16]  Simon Haykin,et al.  Support vector machines for dynamic reconstruction of a chaotic system , 1999 .

[17]  B. Schölkopf,et al.  Advances in kernel methods: support vector learning , 1999 .

[18]  Gunnar Rätsch,et al.  Predicting Time Series with Support Vector Machines , 1997, ICANN.

[19]  D. Sbarbaro,et al.  Multiple local Laguerre models for modelling nonlinear dynamic systems of the Wiener class , 1997 .

[20]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[21]  W. R. Cluett,et al.  A new approach to the identification of pH processes based on the Wiener model , 1995 .

[22]  Gary G. R. Green,et al.  Calculation of the Volterra kernels of non-linear dynamic systems using an artificial neural network , 1994, Biological Cybernetics.

[23]  B. Wahlberg System identification using Kautz models , 1994, IEEE Trans. Autom. Control..

[24]  R. Pearson Nonlinear Input/Output Modeling , 1994 .

[25]  Torbjörn Wigren,et al.  Recursive prediction error identification using the nonlinear wiener model , 1993, Autom..

[26]  Grazyna Pajunen,et al.  Adaptive control of wiener type nonlinear systems , 1992, Autom..

[27]  B. Wahlberg System identification using Laguerre models , 1991 .

[28]  M. J. Korenberg,et al.  The identification of nonlinear biological systems: Wiener and Hammerstein cascade models , 1986, Biological Cybernetics.

[29]  Leon O. Chua,et al.  Fading memory and the problem of approximating nonlinear operators with volterra series , 1985 .

[30]  N. Wiener,et al.  Nonlinear Problems in Random Theory , 1964 .

[31]  Tokunbo Ogunfunmi,et al.  Adaptive Nonlinear System Identification , 2007 .

[32]  Qingsheng Zheng,et al.  Volterra−Laguerre Models for Nonlinear Process Identification with Application to a Fluid Catalytic Cracking Unit , 2004 .

[33]  José Luis Rojo-Álvarez,et al.  Support vector method for robust ARMA system identification , 2004, IEEE Transactions on Signal Processing.

[34]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[35]  Anna Hagenblad,et al.  Aspects of the Identification of Wiener Models , 1999 .

[36]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .