Support vector method for identification of Wiener models
暂无分享,去创建一个
[1] Tokunbo Ogunfunmi,et al. Adaptive Nonlinear System Identification: The Volterra and Wiener Model Approaches , 2007 .
[2] Hannu T. Toivonen,et al. Identification of state-dependent parameter models with support vector regression , 2007, Int. J. Control.
[3] Ricardo J. G. B. Campello,et al. Choice of free parameters in expansions of discrete-time Volterra models using Kautz functions , 2007, Autom..
[4] M. Isaksson,et al. A Kautz-Volterra Behavioral Model for RF Power Amplifiers , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.
[5] J. Suykens,et al. Kernel based partially linear models and nonlinear identification , 2005, IEEE Transactions on Automatic Control.
[6] L. A. Aguirre,et al. On the interpretation and practice of dynamical differences between Hammerstein and Wiener models , 2005 .
[7] Johan A. K. Suykens,et al. Identification of MIMO Hammerstein models using least squares support vector machines , 2005, Autom..
[8] Enrique Baeyens,et al. Identification of block-oriented nonlinear systems using orthonormal bases , 2004 .
[9] J. Sjöberg. Neural networks for modelling and control of dynamic systems: M. Nørgaard, O. Ravn, N. K. Poulsen and L. K. Hansen. Springer-Verlag, London Berlin Heidelberg, 2000, pp. xiv+246 , 2004 .
[10] Chih-Jen Lin,et al. A study on reduced support vector machines , 2003, IEEE Trans. Neural Networks.
[11] Ricardo J. G. B. Campello,et al. Optimal expansions of discrete-time Volterra models using Laguerre functions , 2003, Autom..
[12] Aarne Halme,et al. Modeling of chromatographic separation process with Wiener-MLP representation , 2001 .
[13] Shuichi Adachi,et al. A New System Identification Method Based on Support Vector Machines , 2001 .
[14] R. Pearson,et al. Gray-box identification of block-oriented nonlinear models , 2000 .
[15] Håkan Hjalmarsson,et al. The fundamental role of general orthonormal bases in system identification , 1999, IEEE Trans. Autom. Control..
[16] Simon Haykin,et al. Support vector machines for dynamic reconstruction of a chaotic system , 1999 .
[17] B. Schölkopf,et al. Advances in kernel methods: support vector learning , 1999 .
[18] Gunnar Rätsch,et al. Predicting Time Series with Support Vector Machines , 1997, ICANN.
[19] D. Sbarbaro,et al. Multiple local Laguerre models for modelling nonlinear dynamic systems of the Wiener class , 1997 .
[20] Lennart Ljung,et al. Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..
[21] W. R. Cluett,et al. A new approach to the identification of pH processes based on the Wiener model , 1995 .
[22] Gary G. R. Green,et al. Calculation of the Volterra kernels of non-linear dynamic systems using an artificial neural network , 1994, Biological Cybernetics.
[23] B. Wahlberg. System identification using Kautz models , 1994, IEEE Trans. Autom. Control..
[24] R. Pearson. Nonlinear Input/Output Modeling , 1994 .
[25] Torbjörn Wigren,et al. Recursive prediction error identification using the nonlinear wiener model , 1993, Autom..
[26] Grazyna Pajunen,et al. Adaptive control of wiener type nonlinear systems , 1992, Autom..
[27] B. Wahlberg. System identification using Laguerre models , 1991 .
[28] M. J. Korenberg,et al. The identification of nonlinear biological systems: Wiener and Hammerstein cascade models , 1986, Biological Cybernetics.
[29] Leon O. Chua,et al. Fading memory and the problem of approximating nonlinear operators with volterra series , 1985 .
[30] N. Wiener,et al. Nonlinear Problems in Random Theory , 1964 .
[31] Tokunbo Ogunfunmi,et al. Adaptive Nonlinear System Identification , 2007 .
[32] Qingsheng Zheng,et al. Volterra−Laguerre Models for Nonlinear Process Identification with Application to a Fluid Catalytic Cracking Unit , 2004 .
[33] José Luis Rojo-Álvarez,et al. Support vector method for robust ARMA system identification , 2004, IEEE Transactions on Signal Processing.
[34] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[35] Anna Hagenblad,et al. Aspects of the Identification of Wiener Models , 1999 .
[36] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .