On independent sets in random graphs

The independence number of a sparse random graph <i>G(n, m)</i> of average degree <i>d</i> = 2<i>m/n</i> is well-known to be α<i>(G(n, m))</i> ~ 2<i>n</i> ln<i>(d)/d</i> with high probability. Moreover, a trivial greedy algorithm w.h.p. finds an independent set of size (1 + <i>o</i>(1)) · <i>n</i> ln<i>(d)/d</i>, i.e., half the maximum size. Yet in spite of 30 years of extensive research no efficient algorithm has emerged to produce an independent set with (1 + ε)<i>n</i> ln<i>(d)/d</i>, for any fixed ε > 0. In this paper we prove that the combinatorial structure of the independent set problem in random graphs undergoes a phase transition as the size <i>k</i> of the independent sets passes the point <i>k ~ n</i> ln<i>(d)/d.</i> Roughly speaking, we prove that independent sets of size <i>k</i> > (1 + ε)<i>n</i> ln<i>(d)/d</i> form an intricately ragged landscape, in which local search algorithms are bound to get stuck. We illustrate this phenomenon by providing an exponential lower bound for the Metropolis process, a Markov chain for sampling independents sets.

[1]  Ludek Kucera Graphs with Small Chromatic Numbers are Easy to Color , 1989, Inf. Process. Lett..

[2]  Amin Coja-Oghlan,et al.  Finding Large Independent Sets in Polynomial Expected Time , 2003, Combinatorics, Probability and Computing.

[3]  P. Erdös Some remarks on the theory of graphs , 1947 .

[4]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[5]  B. Szegedy,et al.  Limits of local-global convergent graph sequences , 2012, 1205.4356.

[6]  Colin McDiarmid,et al.  Topics in Chromatic Graph Theory: Colouring random graphs , 2015 .

[7]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[8]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[9]  M. Sipser,et al.  Maximum matching in sparse random graphs , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[10]  Jonathan S. Turner,et al.  Almost All k-Colorable Graphs are Easy to Color , 1988, J. Algorithms.

[11]  Andrea Montanari,et al.  Finding Hidden Cliques of Size \sqrt{N/e} in Nearly Linear Time , 2013, ArXiv.

[12]  Herbert S. Wilf,et al.  Backtrack: An O(1) Expected Time Algorithm for the Graph Coloring Problem , 1984, Inf. Process. Lett..

[13]  Massimiliano Viale,et al.  Phase Transitions for the Cavity Approach to the Clique Problem on Random Graphs , 2010, ArXiv.

[14]  Alan M. Frieze,et al.  Algorithmic theory of random graphs , 1997, Random Struct. Algorithms.

[15]  M. Mézard,et al.  Information, Physics, and Computation , 2009 .

[16]  Florent Krzakala,et al.  The hard-core model on random graphs revisited , 2013, ArXiv.

[17]  Mark Jerrum,et al.  Large Cliques Elude the Metropolis Process , 1992, Random Struct. Algorithms.

[18]  Marc Mézard,et al.  Lattice glass models. , 2002, Physical review letters.

[19]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[20]  B. Bollobás,et al.  Cliques in random graphs , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[21]  Allan Sly,et al.  Maximum independent sets on random regular graphs , 2013, 1310.4787.

[22]  Alan M. Frieze,et al.  On the independence number of random graphs , 1990, Discret. Math..

[23]  N. Alon,et al.  Finding a large hidden clique in a random graph , 1998 .

[24]  Benjamin Rossman The Monotone Complexity of k-clique on Random Graphs , 2010, FOCS.

[25]  Nayantara Bhatnagar,et al.  Reconstruction Threshold for the Hardcore Model , 2010, APPROX-RANDOM.

[26]  D. Gamarnik,et al.  Maximum weight independent sets and matchings in sparse random graphs. Exact results using the local weak convergence method , 2006 .

[27]  Alan M. Frieze,et al.  Analysis of Two Simple Heuristics on a Random Instance of k-SAT , 1996, J. Algorithms.

[28]  Ludek Kucera,et al.  Expected Behavior of Graph Coloring Algorithms , 1977, FCT.

[29]  Martin E. Dyer,et al.  On Counting Independent Sets in Sparse Graphs , 2002, SIAM J. Comput..

[30]  P. Anderson,et al.  Application of statistical mechanics to NP-complete problems in combinatorial optimisation , 1986 .

[31]  U. Feige,et al.  Finding and certifying a large hidden clique in a semirandom graph , 2000 .

[32]  M. Talagrand Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.

[33]  Martin E. Dyer,et al.  The Solution of Some Random NP-Hard Problems in Polynomial Expected Time , 1989, J. Algorithms.

[34]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[35]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[36]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[37]  Cristopher Moore,et al.  Independent Sets in Random Graphs from the Weighted Second Moment Method , 2010, APPROX-RANDOM.

[38]  Richard M. Karp,et al.  Maximum Matchings in Sparse Random Graphs , 1981, FOCS 1981.

[39]  Andrea Montanari,et al.  Reconstruction and Clustering in Random Constraint Satisfaction Problems , 2011, SIAM J. Discret. Math..

[40]  Amin Coja-Oghlan,et al.  Algorithmic Barriers from Phase Transitions , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[41]  Andrea Montanari,et al.  Gibbs states and the set of solutions of random constraint satisfaction problems , 2006, Proceedings of the National Academy of Sciences.

[42]  Michael Molloy,et al.  The analysis of a list-coloring algorithm on a random graph , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.