MATISSE: advanced Earth modeling for imaging and scene simulation

MATISSE is a new atmospheric radiative transfer code currently under development at Onera. Its purpose is to compute background radiance images by taking into account atmospheric, cloud and ground radiation and the variability of atmospheric properties. Propagation is calculated using a Correlated K model (CK) developed at Onera. The spectral range is between 3 to 13 micrometers with a resolution of 5 cm-1. Weather forecast outputs and aerosol climatology are used as inputs to account for spatial variability of atmospheric properties in radiance computations. Partial stratocumulus cloud cover can be generated and the radiation computations use Independent Pixel Approximation (IPA) and Bidirectional Reflectivity Distribution Functions (BRDF). Ground emission and reflectance are computed from spectral emissivities, BRDF and a simple thermal model for the local ground temperature. Databases include a Digital Terrain Elevation (DTED) and a land use database with 30' spatial resolution. Texture models are used to add realistic ground and cloud clutter down to 10 meter resolution. A line-by-line model is included to compute the spectral intensity propagated from high temperature exhaust plumes. Refraction effects are computed, but only along one single line of sight.