Set-valued measures

[1]  Werner Hildenbrand,et al.  Pareto Optimality for a Measure Space of Economic Agents , 1969 .

[2]  J. P. Lasalle,et al.  functional analysis and time Optimal Control , 1969 .

[3]  C. Castaing Sur les multi-applications mesurables , 1967 .

[4]  R. Rockafellar Measurable dependence of convex sets and functions on parameters , 1969 .

[5]  Measurability Properties of Set-Valued Mappings in a Banach Space , 1970 .

[6]  R. Aumann INTEGRALS OF SET-VALUED FUNCTIONS , 1965 .

[7]  M. Jacobs On the Approximation of Integrals of Multivalued Functions , 1969 .

[8]  G. Debreu Integration of correspondences , 1967 .

[9]  Henry Hermes,et al.  Calculus of Set Valued Functions and Control , 1968 .

[10]  H. Halkin Some further generalizations of a theorem of Lyapounov , 1964 .

[11]  The Radon-Nikodým derivative of a correspondence , 1972 .

[12]  T. F. Bridgland Trajectory integrals of set valued functions. , 1970 .

[13]  C. J. Himmelberg,et al.  Some Selection Theorems for Measurable Functions , 1969, Canadian Journal of Mathematics.

[14]  H. Banks,et al.  A Differential Calculus for Multifunctions , 1970 .

[15]  Paul R. Halmos,et al.  The range of a vector measure , 1948 .

[16]  M. Hukuhara INTEGRATION DES APPLICAITONS MESURABLES DONT LA VALEUR EST UN COMPACT CONVEXE , 1967 .

[17]  Robert J. Aumann,et al.  EXISTENCE OF COMPETITIVE EQUILIBRIA IN MARKETS WITH A CONTINUUM OF TRADERS , 2020, Classics in Game Theory.

[18]  K. Vind,et al.  EDGEWORTH-ALLOCATIONS IN AN EXCHANGE ECONOMY WITH MANY TRADERS , 1964 .