Small-Support Uncertainty Principles on $\mathbb{Z}/p$ over Finite Fields.
暂无分享,去创建一个
[1] P. Frenkel. Simple proof of Chebotarev's theorem on roots of unity , 2003, math/0312398.
[2] W. T. Gowers,et al. A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .
[3] Terence Tao,et al. Additive combinatorics , 2007, Cambridge studies in advanced mathematics.
[4] Alexander Lubotzky,et al. Good cyclic codes and the uncertainty principle , 2017, L’Enseignement Mathématique.
[5] T. Tao. An uncertainty principle for cyclic groups of prime order , 2003, math/0308286.
[6] Roy Meshulam. An uncertainty inequality for finite abelian groups , 2006, Eur. J. Comb..
[7] Morris Newman,et al. On a theorem of Čebotarev , 1976 .
[8] Denis Thérien,et al. Non-Uniform Automata Over Groups , 1987, Inf. Comput..
[9] P. Stevenhagen,et al. Chebotarëv and his density theorem , 1996 .
[10] E. Villaseñor. Introduction to Quantum Mechanics , 2008, Nature.
[11] R. Evans,et al. Generalized Vandermonde determinants and roots of unity of prime order , 1976 .
[12] E. Szemerédi. On sets of integers containing k elements in arithmetic progression , 1975 .
[13] Howard Straubing,et al. Non-Uniform Automata Over Groups , 1990, Inf. Comput..
[14] W. T. Gowers,et al. A new proof of Szemerédi's theorem , 2001 .