Magneto-responsive hydrogels based on maghemite/triblock terpolymer hybrid micelles

We report on a new approach towards magneto-responsive hydrogels, showing a reversible gelation upon inductive heating via AC magnetic fields. An aqueous solution of a triblock terpolymer with a partially quaternized poly(2-vinylpyridine) (Pq2VP) outer block, a water soluble poly(ethylene oxide) (PEO) middle block and a thermo-sensitive poly(glycidyl methyl ether-co-ethyl glycidyl ether) (P(GME-co-EGE)) end block (Pq2VP-b-PEO-b-P(GME-co-EGE)) was mixed with a solution of sodium citrate stabilized superparamagnetic maghemite nanoparticles. Due to electrostatic interactions between the oppositely charged particles, surface and the Pq2VP block of the triblock terpolymer, well-defined hybrid micelles with a superparamagnetic core were formed. The number of triblock terpolymer chains stabilizing the nanoparticles was found to be constant above a critical triblock terpolymer/maghemite ratio, i.e. for higher polymer contents hybrid micelles and free (non-bound) triblock terpolymers are present in solution. Thermo-reversible hydrogels are formed via an open association of hybrid micelles at temperatures above the cloud point of the P(GME-co-EGE) corona blocks, which form the network junctions. The superparamagnetic character of the maghemite nanoparticles enables contactless heating, and thus gelation, by applying AC magnetic fields, as demonstrated by high frequency magnetocalorimetry. The thermo-reversible gelation and the dynamic-mechanical properties of the hydrogels were studied by rheology.

[1]  A. Schmidt Electromagnetic Activation of Shape Memory Polymer Networks Containing Magnetic Nanoparticles , 2006 .

[2]  E. Gil,et al.  Stimuli-reponsive polymers and their bioconjugates , 2004 .

[3]  G. Auernhammer,et al.  Frozen-In Magnetic Order in Uniaxial Magnetic Gels: Preparation and Physical Properties , 2003 .

[4]  Yousef Haik,et al.  Biodegradable magnetic gel: synthesis and characterization , 2003 .

[5]  M. Muhammed,et al.  Injectable Superparamagnetic Ferrogels for Controlled Release of Hydrophobic Drugs , 2009 .

[6]  M. Zrínyi,et al.  Preparation and Responsive Properties of Magnetically Soft Poly(N-isopropylacrylamide) Gels , 2000 .

[7]  Dean-Mo Liu,et al.  Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[8]  I. Sokolov,et al.  Polyelectrolyte Stabilized Nanowires from Fe3O4 Nanoparticles via Magnetic Field Induced Self-Assembly , 2006 .

[9]  Pieter Stroeve,et al.  Synthesis and Characterization of Nanometer-Size Fe3O4 and γ-Fe2O3 Particles , 1996 .

[10]  Werner A. Kaiser,et al.  Enhancement of AC-losses of magnetic nanoparticles for heating applications , 2004 .

[11]  Patrick J. Schexnailder,et al.  Nanocomposite polymer hydrogels , 2009 .

[12]  P. Taboada,et al.  Effect of copolymer architecture on the micellization and gelation of aqueous solutions of copolymers of ethylene oxide and styrene oxide. , 2007, The journal of physical chemistry. B.

[13]  Yong Wang,et al.  Solvent-Free Atom Transfer Radical Polymerization in the Synthesis of Fe2O3@Polystyrene Core−Shell Nanoparticles , 2003 .

[14]  Ming Yang,et al.  Behaviors of controlled drug release of magnetic-gelatin hydrogel coated stainless steel for drug-eluting-stents application , 2007 .

[15]  M. Zrínyi,et al.  Magnetic field sensitive functional elastomers with tuneable elastic modulus , 2006 .

[16]  Lin Yu,et al.  Injectable hydrogels as unique biomedical materials. , 2008, Chemical Society reviews.

[17]  Miklós Zrínyi,et al.  Shape Transition of Magnetic Field Sensitive Polymer Gels , 1998 .

[18]  A. Schmidt Induction heating of novel thermoresponsive ferrofluids , 2005 .

[19]  A. Schmidt,et al.  Thermosensitive magnetic fluids , 2006 .

[20]  R. Kasi,et al.  Stimuli-responsive polymer gels. , 2008, Soft matter.

[21]  A. Schmidt Thermoresponsive magnetic colloids , 2007 .

[22]  A. Berkowitz,et al.  Influence of Crystallite Size on the Magnetic Properties of Acicular γ‐Fe2O3 Particles , 1968 .

[23]  T. McLeish,et al.  Rheological Response of Surfactant Cubic Phases , 1995 .

[24]  K. Edwards,et al.  A New Double-Responsive Block Copolymer Synthesized via RAFT Polymerization: Poly(N-isopropylacrylamide)-block-poly(acrylic acid) , 2004 .

[25]  R. Ramanujan,et al.  Magnetic and hydrogel composite materials for hyperthermia applications , 2004, Journal of materials science. Materials in medicine.

[26]  H. Winter,et al.  Physical gelation of a bacterial thermoplastic elastomer , 1992 .

[27]  Ying Li,et al.  Temperature-responsive magnetite/PEO-PPO-PEO block copolymer nanoparticles for controlled drug targeting delivery. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[28]  A. Schmidt,et al.  Magnetic thermoresponsive core-shell nanoparticles , 2006 .

[29]  T. Hellweg,et al.  Smart hydrogels based on double responsive triblock terpolymers , 2009 .

[30]  C. R. Mayer,et al.  Magnetic Nanoparticles Trapped in pH 7 Hydrogels as a Tool to Characterize the Properties of the Polymeric Network , 2000 .

[31]  Chenjie Xu,et al.  Controlled PEGylation of Monodisperse Fe3O4 Nanoparticles for Reduced Non‐Specific Uptake by Macrophage Cells , 2007 .

[32]  M. Zrínyi,et al.  Smart Nanocomposite Polymer Gels , 2003 .

[33]  Roy W. Chantrell,et al.  Measurements of particle size distribution parameters in ferrofluids , 1978 .

[34]  H. Hoffmann,et al.  Concentrated Aqueous Micellar Solutions of Diblock Copoly(oxyethylene/oxybutylene) E41B8: A Study of Phase Behavior , 1997 .

[35]  Jinming Gao,et al.  Folate-encoded and Fe3O4-loaded polymeric micelles for dual targeting of cancer cells , 2008 .

[36]  Ulrich Pison,et al.  One-pot synthesis of pegylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents. , 2006, Biomacromolecules.

[37]  H. Winter,et al.  Linear Viscoelasticity at the Gel Point of a Crosslinking PDMS with Imbalanced Stoichiometry , 1987 .

[38]  Controlled clustering of superparamagnetic nanoparticles using block copolymers: design of new contrast agents for magnetic resonance imaging. , 2005, Journal of the American Chemical Society.

[39]  Chaoliang He,et al.  In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[40]  T. A. Taton,et al.  Magnetomicelles: composite nanostructures from magnetic nanoparticles and cross-linked amphiphilic block copolymers. , 2005, Nano letters.

[41]  I. Hamley,et al.  SANS and Rheology Study of Aqueous Solutions and Gels Containing Highly Swollen Diblock Copolymer Micelles , 2003 .

[42]  Z John Zhang,et al.  Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4/polystyrene core/shell nanoparticles. , 2002, Journal of the American Chemical Society.

[43]  H. Otsuka,et al.  Polystyrene-Grafted Magnetite Nanoparticles Prepared through Surface-Initiated Nitroxyl-Mediated Radical Polymerization , 2003 .

[44]  K. Matyjaszewski,et al.  Thermally Responsive PM(EO)2MA Magnetic Microgels via Activators Generated by Electron Transfer Atom Transfer Radical Polymerization in Miniemulsion , 2009 .

[45]  S. Armes,et al.  Micellization in pH-sensitive amphiphilic block copolymers in aqueous media and the formation of metal nanoparticles. , 2005, Faraday discussions.

[46]  San-Yuan Chen,et al.  Study on controlled drug permeation of magnetic-sensitive ferrogels: effect of Fe3O4 and PVA. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[47]  B. Sumerlin,et al.  Temperature and redox responsive hydrogels from ABA triblock copolymers prepared by RAFT polymerization , 2009 .

[48]  Mitsuhiro Ebara,et al.  Dual magnetic-/temperature-responsive nanoparticles for microfluidic separations and assays. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[49]  R. Prud’homme,et al.  Structure and Rheology Studies of Poly(oxyethylene−oxypropylene−oxyethylene) Aqueous Solution , 1996 .

[50]  J. Duerk,et al.  Magnetite‐Loaded Polymeric Micelles as Ultrasensitive Magnetic‐Resonance Probes , 2005 .

[51]  M. Zrínyi,et al.  Intelligent polymer gels controlled by magnetic fields , 2000 .

[52]  S. Provencher A constrained regularization method for inverting data represented by linear algebraic or integral equations , 1982 .

[53]  Louiza Loizou,et al.  Superparamagnetic hybrid micelles, based on iron oxide nanoparticles and well-defined diblock copolymers possessing beta-ketoester functionalities. , 2009, Biomacromolecules.

[54]  R. Georgieva,et al.  Fabrication of Colloidal Stable, Thermosensitive, and Biocompatible Magnetite Nanoparticles and Study of Their Reversible Agglomeration in Aqueous Milieu , 2009 .

[55]  M. Watanabe,et al.  Preparation and solution behavior of a thermoresponsive diblock copolymer of poly(ethyl glycidyl ether) and poly(ethylene oxide). , 2007, Langmuir.

[56]  S. Jacobo,et al.  Composites of polymeric gels and magnetic nanoparticles: Preparation and drug release behavior , 2007 .

[57]  Sébastien Lecommandoux,et al.  Smart hybrid magnetic self-assembled micelles and hollow capsules , 2005 .

[58]  D. Morse,et al.  Viscoelastic behavior of cubic phases in block copolymer melts , 1999 .

[59]  Jun-ichi Takimoto,et al.  Giant Reduction in Dynamic Modulus of κ-Carrageenan Magnetic Gels , 2006 .

[60]  R. Naik,et al.  Magnetic relaxation and dissipative heating in ferrofluids , 2007 .

[61]  W. Richtering,et al.  Dynamic light scattering from polymer solutions , 1989 .

[62]  H. Henning Winter,et al.  Rheology of Polymers Near Liquid-Solid Transitions , 1997 .

[63]  A. Schmidt The Synthesis of Magnetic Core‐Shell Nanoparticles by Surface‐Initiated Ring‐Opening Polymerization of ε‐Caprolactone , 2005 .

[64]  Axel H. E. Müller,et al.  Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities , 2007 .

[65]  M. Zrínyi,et al.  Magnetic Field-Responsive Smart Polymer Composites , 2007 .

[66]  I. Hamley Amphiphilic diblock copolymer gels: the relationship between structure and rheology , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[67]  Peter Wust,et al.  Description and characterization of the novel hyperthermia- and thermoablation-system MFH 300F for clinical magnetic fluid hyperthermia. , 2004, Medical physics.

[68]  R. Ramanujan,et al.  Magnet–PNIPA hydrogels for bioengineering applications , 2009, Journal of Materials Science.

[69]  H. Schmalz,et al.  One-pot synthesis of polyglycidol-containing block copolymers with alkyllithium initiators using the phosphazene base t-BuP4 , 2007 .

[70]  Miklós Zrínyi,et al.  Ferrogel: a new magneto-controlled elastic medium , 1997 .

[71]  T. A. Taton,et al.  Encapsulated magnetic nanoparticles as supports for proteins and recyclable biocatalysts. , 2007, Bioconjugate chemistry.

[72]  Olivier Sandre,et al.  Magnetic Nanocomposite Micelles and Vesicles , 2005 .

[73]  Ryan C Hayward,et al.  Spontaneous generation of amphiphilic block copolymer micelles with multiple morphologies through interfacial Instabilities. , 2008, Journal of the American Chemical Society.

[74]  Andreas Kirschning,et al.  Inductive heating for organic synthesis by using functionalized magnetic nanoparticles inside microreactors. , 2008, Angewandte Chemie.

[75]  Jeppe Madsen,et al.  A new class of biochemically degradable, stimulus-responsive triblock copolymer gelators. , 2006, Angewandte Chemie.

[76]  Hiroaki Suzuki,et al.  Stimulus-responsive Gels: Promising Materials for the Construction of Micro Actuators and Sensors , 2006 .