Stability analysis of explicit entropy viscosity methods for non-linear scalar conservation equations

This material is based upon work supported by the Department of Homeland Security under agreement 2008-DN-077-ARI018-02, National Science Foundation grants DMS-0811041, DMS-0914977, DMS-1015984, AF Office of Scientific Research grant FA99550-12-0358, and is partially supported by award KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST)

[1]  Peter Hansbo,et al.  On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws , 1990 .

[2]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[3]  Jean-Luc Guermond,et al.  On the use of the notion of suitable weak solutions in CFD , 2008 .

[4]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[5]  Caskey,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS I . THE BASIC EXPERIMENT , 1962 .

[6]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[7]  Jean-Luc Guermond,et al.  Implementation of the entropy viscosity method with the discontinuous Galerkin method , 2013 .

[8]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[9]  Jean-Luc Guermond,et al.  Entropy-based nonlinear viscosity for Fourier approximations of conservation laws , 2008 .

[10]  J. Nédélec,et al.  First order quasilinear equations with boundary conditions , 1979 .

[11]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems , 1986 .

[12]  Chi-Wang Shu,et al.  Stability Analysis and A Priori Error Estimates of the Third Order Explicit Runge-Kutta Discontinuous Galerkin Method for Scalar Conservation Laws , 2010, SIAM J. Numer. Anal..

[13]  Erik Burman,et al.  A Continuous Interior Penalty Method for Viscoelastic Flows , 2008, SIAM J. Sci. Comput..

[14]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[15]  Anders Szepessy,et al.  Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions , 1989 .

[16]  S. Osher,et al.  Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .

[17]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems , 1986 .

[18]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[19]  Bojan Popov,et al.  Order of convergence of second order schemes based on the minmod limiter , 2006, Math. Comput..

[20]  Jean-Luc Guermond,et al.  Entropy Viscosity Method for High-Order Approximations of Conservation Laws , 2011 .

[21]  Jean-Luc Guermond,et al.  Entropy viscosity method for nonlinear conservation laws , 2011, J. Comput. Phys..

[22]  Erik Burman,et al.  On nonlinear artificial viscosity, discrete maximum principle and hyperbolic conservation laws , 2007 .

[23]  Juhani Pitkäranta,et al.  An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .

[24]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[25]  ShakibFarzin,et al.  A new finite element formulation for computational fluid dynamics , 1991 .

[26]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[27]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[28]  P. Hansbo,et al.  Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .

[29]  S. Osher,et al.  Some results on uniformly high-order accurate essentially nonoscillatory schemes , 1986 .

[30]  Thomas J. R. Hughes,et al.  The Stokes problem with various well-posed boundary conditions - Symmetric formulations that converge for all velocity/pressure spaces , 1987 .

[31]  Miguel A. Fernández,et al.  Explicit Runge-Kutta Schemes and Finite Elements with Symmetric Stabilization for First-Order Linear PDE Systems , 2010, SIAM J. Numer. Anal..