Crack analysis in media with orthotropic Functionally Graded Materials using extended Isogeometric analysis

Abstract In the present study the extended Isogeometric analysis is applied with orthotropic approach for numerical modeling of stationary cracks in Functionally Graded Material plane bodies. Enrichment functions and level set method are integrated into isogeometric analysis to develop the extended Isogeometric analysis formulation. The interaction integral method with three formulations related to auxiliary fields are used to obtain the stress intensity function. Smooth functions based on spatial coordinates are applied to take into account the variation of orthotropic materials of Functionally Graded Material plates in intended direction. The proposed method is compared with existing methods.

[1]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[2]  Alireza Asadpoure,et al.  Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method , 2007 .

[3]  Toshio Hirai,et al.  Recent and Prospective Development of Functionally Graded Materials in Japan , 1999 .

[4]  T. Belytschko,et al.  X‐FEM in isogeometric analysis for linear fracture mechanics , 2011 .

[5]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[6]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[7]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[8]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[9]  F. Erdogan,et al.  Mode I Crack Problem in an Inhomogeneous Orthotropic Medium , 1997 .

[10]  Soheil Mohammadi,et al.  XFEM Fracture Analysis of Composites , 2012 .

[11]  S. Uemura,et al.  The Activities of FGM on New Application , 2003 .

[12]  I. Shiota,et al.  Proceedings of the first international symposium on functionally gradient materials : FGM'90 , 1990 .

[13]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[14]  Glaucio H. Paulino,et al.  Consistent Formulations of the Interaction Integral Method for Fracture of Functionally Graded Materials , 2005 .

[15]  H. Hong,et al.  Review of Dual Boundary Element Methods With Emphasis on Hypersingular Integrals and Divergent Series , 1999 .

[16]  N. Valizadeh,et al.  Extended isogeometric analysis for simulation of stationary and propagating cracks , 2012 .

[17]  Saeed Shojaee,et al.  CRACK ANALYSIS IN ORTHOTROPIC MEDIA USING COMBINATION OF ISOGEOMETRIC ANALYSIS AND EXTENDED FINITE ELEMENT , 2014 .

[18]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[19]  Thomas J. R. Hughes,et al.  NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .

[20]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[21]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[22]  S. Mohammadi Extended Finite Element Method , 2008 .

[23]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[24]  Soheil Mohammadi,et al.  XFEM Fracture Analysis of Composites: Mohammadi/XFEM Fracture Analysis of Composites , 2012 .

[25]  Robert J. Asaro,et al.  A Simplified Method for Calculating the Crack-Tip Field of Functionally Graded Materials Using the Domain Integral , 1999 .

[26]  P. C. Paris,et al.  On cracks in rectilinearly anisotropic bodies , 1965 .

[27]  A. Kawasaki,et al.  Functionally graded materials : design, processing and applications , 1999 .

[28]  T. Belytschko,et al.  A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM , 2010 .

[29]  S. Shojaee,et al.  Combination of isogeometric analysis and extended finite element in linear crack analysis , 2013 .

[30]  G. Paulino,et al.  Finite element evaluation of mixed mode stress intensity factors in functionally graded materials , 2002 .

[31]  Siew Hwa Chan,et al.  Performance and emissions characteristics of a partially insulated gasoline engine , 2001 .

[32]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[33]  J. W. Eischen,et al.  Fracture of nonhomogeneous materials , 1987, International Journal of Fracture.

[34]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[35]  Ted Belytschko,et al.  Fast integration and weight function blending in the extended finite element method , 2009 .

[36]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[37]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .

[38]  S. Rahman,et al.  A New Interaction Integral Method for Analysis of Cracks in Orthotropic Functionally Graded Materials , 2003 .

[39]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[40]  H. Hong,et al.  Derivations of Integral Equations of Elasticity , 1988 .

[41]  F. Erdogan,et al.  The crack problem for a nonhomogeneous plane , 1983 .

[42]  J. Dolbow,et al.  On the computation of mixed-mode stress intensity factors in functionally graded materials , 2002 .

[43]  Shuodao Wang,et al.  A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity , 1980 .

[44]  Murat Ozturk,et al.  The Mixed Mode Crack Problem in an Inhomogeneous Orthotropic Medium , 1999 .

[45]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[46]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[47]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[48]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[49]  Glaucio H. Paulino,et al.  The interaction integral for fracture of orthotropic functionally graded materials: Evaluation of stress intensity factors , 2003 .

[50]  Glaucio H. Paulino,et al.  Mixed-mode fracture of orthotropic functionally graded materials using finite elements and the modified crack closure method , 2002 .

[51]  Markus Kästner,et al.  Development of a quadratic finite element formulation based on the XFEM and NURBS , 2011 .

[52]  Soheil Mohammadi,et al.  XFEM fracture analysis of orthotropic functionally graded materials , 2013 .

[53]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[54]  Glaucio H. Paulino,et al.  T-stress, mixed-mode stress intensity factors, and crack initiation angles in functionally graded materials: a unified approach using the interaction integral method , 2003 .

[55]  Michael H. Santare,et al.  Numerical Calculation of Stress Intensity Factors in Functionally Graded Materials , 2000 .