Constant growth rate can be supported by decreasing energy flux and increasing aerobic glycolysis.

[1]  H. Krebs,et al.  The oxidation of pyruvate in pigeon breast muscle. , 1940, The Biochemical journal.

[2]  J. Monod The Growth of Bacterial Cultures , 1949 .

[3]  O. Warburg On respiratory impairment in cancer cells. , 1956, Science.

[4]  R. H. De Deken,et al.  The Crabtree Effect: A Regulatory System in Yeast , 1966 .

[5]  B. Chance,et al.  Bioenergetic studies of mitochondrial oxidative phosphorylation using 31phosphorus NMR. , 1985, The Journal of biological chemistry.

[6]  R. Shulman,et al.  In vivo 31P nuclear magnetic resonance saturation transfer measurements of phosphate exchange reactions in the yeast Saccharomyces cerevisiae , 1985, FEBS letters.

[7]  B Crabtree,et al.  The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells , 1985, Bioscience reports.

[8]  D. Appling Compartmentation of folate‐mediated one‐carbon metabolism in eukaryotes , 1991, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[9]  D. Appling,et al.  Characterization of the folate-dependent mitochondrial oxidation of carbon 3 of serine. , 1993, Biochemistry.

[10]  M. Portman Measurement of unidirectional P(i)-->ATP flux in lamb myocardium in vivo. , 1994, Biochimica et biophysica acta.

[11]  Q. Ju,et al.  Ribosome synthesis during the growth cycle of Saccharomyces cerevisiae , 1994, Yeast.

[12]  K. Brindle,et al.  31P NMR magnetization transfer study of the control of ATP turnover in Saccharomyces cerevisiae. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Karl Brand,et al.  Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species 1 , 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[14]  J. Pronk,et al.  Effect of Specific Growth Rate on Fermentative Capacity of Baker’s Yeast , 1998, Applied and Environmental Microbiology.

[15]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[16]  Pronk,et al.  Regulation of fermentative capacity and levels of glycolytic enzymes in chemostat cultures of Saccharomyces cerevisiae. , 2000, Enzyme and microbial technology.

[17]  S. Bonhoeffer,et al.  Cooperation and Competition in the Evolution of ATP-Producing Pathways , 2001, Science.

[18]  P. Rich The molecular machinery of Keilin's respiratory chain. , 2003, Biochemical Society transactions.

[19]  B. Palsson,et al.  Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[20]  P. Hammerman,et al.  Cytokine stimulation of aerobic glycolysis in hematopoietic cells exceeds proliferative demand , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[21]  Armin Fiechter,et al.  Changes in carbohydrate composition and trehalase-activity during the budding cycle of Saccharomyces cerevisiae , 2004, Archiv für Mikrobiologie.

[22]  W. A. Scheffers,et al.  A theoretical evaluation of growth yields of yeasts , 2004, Antonie van Leeuwenhoek.

[23]  Nicola J. Rinaldi,et al.  Transcriptional regulatory code of a eukaryotic genome , 2004, Nature.

[24]  R. Gillies,et al.  Why do cancers have high aerobic glycolysis? , 2004, Nature Reviews Cancer.

[25]  H. Meyenburg Energetics of the budding cycle of Saccharomyces cerevisiae during glucose limited aerobic growth , 2004, Archiv für Mikrobiologie.

[26]  David Botstein,et al.  GO: : TermFinder--open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes , 2004, Bioinform..

[27]  Kara Dolinski,et al.  Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures. , 2005, Molecular biology of the cell.

[28]  P. C. Hinkle P/O ratios of mitochondrial oxidative phosphorylation. , 2005, Biochimica et biophysica acta.

[29]  Ting Wang,et al.  An improved map of conserved regulatory sites for Saccharomyces cerevisiae , 2006, BMC Bioinformatics.

[30]  J. Derisi,et al.  Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise , 2006, Nature.

[31]  Nuria Pujol‐Carrion,et al.  Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae , 2006, Journal of Cell Science.

[32]  E. O’Shea,et al.  Quantification of protein half-lives in the budding yeast proteome , 2006, Proceedings of the National Academy of Sciences.

[33]  Fred Winston,et al.  Heme Levels Switch the Function of Hap1 of Saccharomyces cerevisiae between Transcriptional Activator and Transcriptional Repressor , 2007, Molecular and Cellular Biology.

[34]  R. Deberardinis,et al.  Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis , 2007, Proceedings of the National Academy of Sciences.

[35]  Rainer Spang,et al.  Inferring cellular networks – a review , 2007, BMC Bioinformatics.

[36]  Merja Penttilä,et al.  Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A , 2008, BMC Systems Biology.

[37]  Matthew J. Brauer,et al.  Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. , 2008, Molecular biology of the cell.

[38]  David Botstein,et al.  Influence of genotype and nutrition on survival and metabolism of starving yeast , 2008, Proceedings of the National Academy of Sciences.

[39]  Merja Penttilä,et al.  Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. , 2008, FEMS yeast research.

[40]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[41]  N. Slavov,et al.  Correlation signature of the macroscopic states of the gene regulatory network in cancer , 2009, Proceedings of the National Academy of Sciences.

[42]  L. Cantley,et al.  Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation , 2009, Science.

[43]  Matthew J. Brauer,et al.  Slow Growth Induces Heat-shock Resistance in Normal and Respiratory-deficient Yeast , 2022 .

[44]  Lars M. Blank,et al.  Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae. , 2009, Microbiology.

[45]  Edoardo M. Airoldi,et al.  Predicting Cellular Growth from Gene Expression Signatures , 2009, PLoS Comput. Biol..

[46]  Alexander van Oudenaarden,et al.  Growth Landscape Formed by Perception and Import of Glucose in Yeast , 2009, Nature.

[47]  B. Teusink,et al.  Shifts in growth strategies reflect tradeoffs in cellular economics , 2009, Molecular systems biology.

[48]  C. Eyers Universal sample preparation method for proteome analysis , 2009 .

[49]  M. Mann,et al.  Universal sample preparation method for proteome analysis , 2009, Nature Methods.

[50]  J. Pérez-Ortín,et al.  There is a steady‐state transcriptome in exponentially growing yeast cells , 2010, Yeast.

[51]  Yi Zhou,et al.  Catabolic efficiency of aerobic glycolysis: The Warburg effect revisited , 2010, BMC Systems Biology.

[52]  S. McKnight On Getting There from Here , 2010, Science.

[53]  David Botstein,et al.  Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate , 2010, Proceedings of the National Academy of Sciences.

[54]  U. Alon,et al.  Cost of unneeded proteins in E. coli is reduced after several generations in exponential growth. , 2010, Molecular cell.

[55]  Elizabeth L. Johnson,et al.  Quiescent Fibroblasts Exhibit High Metabolic Activity , 2010, PLoS biology.

[56]  D. Botstein,et al.  Universality, specificity and regulation of S. cerevisiae growth rate response in different carbon s , 2010 .

[57]  T. Hwa,et al.  Interdependence of Cell Growth and Gene Expression: Origins and Consequences , 2010, Science.

[58]  Nikolai Slavov,et al.  Inference of Sparse Networks with Unobserved Variables. Application to Gene Regulatory Networks , 2010, AISTATS.

[59]  D. Botstein,et al.  Metabolic cycling without cell division cycling in respiring yeast , 2011, Proceedings of the National Academy of Sciences.

[60]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[61]  Roded Sharan,et al.  Genome-Scale Metabolic Modeling Elucidates the Role of Proliferative Adaptation in Causing the Warburg Effect , 2011, PLoS Comput. Biol..

[62]  A. Caudy,et al.  Riboneogenesis in Yeast , 2011, Cell.

[63]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[64]  M. V. Vander Heiden,et al.  Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. , 2011, Annual review of cell and developmental biology.

[65]  D. Botstein,et al.  Survival of starving yeast is correlated with oxidative stress response and nonrespiratory mitochondrial function , 2011, Proceedings of the National Academy of Sciences.

[66]  S. Oliver,et al.  Genome-wide analysis of yeast stress survival and tolerance acquisition to analyze the central trade-off between growth rate and cellular robustness , 2011, Molecular biology of the cell.

[67]  D. Botstein,et al.  Coupling among growth rate response, metabolic cycle, and cell division cycle in yeast , 2011, Molecular biology of the cell.

[68]  Michelle S. Scott,et al.  A Quantitative Spatial Proteomics Analysis of Proteome Turnover in Human Cells* , 2011, Molecular & Cellular Proteomics.

[69]  Yuval Hart,et al.  The last generation of bacterial growth in limiting nutrient , 2013, BMC Systems Biology.

[70]  D. Botstein,et al.  Monitoring Editor , 2011 .

[71]  V. Mootha,et al.  Metabolite Profiling Identifies a Key Role for Glycine in Rapid Cancer Cell Proliferation , 2012, Science.

[72]  P. Ward,et al.  Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. , 2012, Cancer cell.

[73]  Andrea K. Bryan,et al.  Continuous and Long-Term Volume Measurements with a Commercial Coulter Counter , 2012, PloS one.

[74]  Stefan J. Jol,et al.  Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast , 2013 .

[75]  B. Faubert,et al.  Posttranscriptional Control of T Cell Effector Function by Aerobic Glycolysis , 2013, Cell.

[76]  Sara Linse,et al.  Calmodulin transduces Ca2+ oscillations into differential regulation of its target proteins. , 2013, ACS chemical neuroscience.

[77]  D. Botstein,et al.  Decoupling nutrient signaling from growth rate causes aerobic glycolysis and deregulation of cell size and gene expression , 2013, Molecular biology of the cell.