The quasi-independent curvilinear coordinate approximation for geometry optimization.

This paper presents an efficient alternative to well established algorithms for molecular geometry optimization. This approach exploits the approximate decoupling of molecular energetics in a curvilinear internal coordinate system, allowing separation of the 3N-dimensional optimization problem into an O(N) set of quasi-independent one-dimensional problems. Each uncoupled optimization is developed by a weighted least squares fit of energy gradients in the internal coordinate system followed by extrapolation. In construction of the weights, only an implicit dependence on topologically connected internal coordinates is present. This new approach is competitive with the best internal coordinate geometry optimization algorithms in the literature and works well for large biological problems with complicated hydrogen bond networks and ligand binding motifs.

[1]  Peter Pulay,et al.  Newtonian molecular dynamics in general curvilinear internal coordinates , 2002 .

[2]  Jon Baker,et al.  Techniques for geometry optimization: A comparison of cartesian and natural internal coordinates , 1993, J. Comput. Chem..

[3]  J. C. Phillips,et al.  Constraint theory, vector percolation and glass formation , 1985 .

[4]  H. Bernhard Schlegel,et al.  Exploring potential energy surfaces for chemical reactions: An overview of some practical methods , 2003, J. Comput. Chem..

[5]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[6]  Roland Lindh,et al.  ON THE USE OF A HESSIAN MODEL FUNCTION IN MOLECULAR GEOMETRY OPTIMIZATIONS , 1995 .

[7]  James B. Adams,et al.  Interatomic Potentials from First-Principles Calculations: The Force-Matching Method , 1993, cond-mat/9306054.

[8]  Jon Baker,et al.  Geometry optimization of large biomolecules in redundant internal coordinates , 2000 .

[9]  Peter Pulay,et al.  The calculation of ab initio molecular geometries: efficient optimization by natural internal coordinates and empirical correction by offset forces , 1992 .

[10]  Peter Pulay,et al.  An efficient direct method for geometry optimization of large molecules in internal coordinates , 1998 .

[11]  H. Schlegel,et al.  Optimization of equilibrium geometries and transition structures , 1982 .

[12]  Jon Baker,et al.  The generation and use of delocalized internal coordinates in geometry optimization , 1996 .

[13]  L. Schäfer,et al.  Normal coordinate ab initio force relaxation , 1978 .

[14]  John C. Slater,et al.  Atomic Radii in Crystals , 1964 .

[15]  R. Fletcher Practical Methods of Optimization , 1988 .

[16]  Olivier Coulaud,et al.  Linear scaling algorithm for the coordinate transformation problem of molecular geometry optimization , 2000 .

[17]  Ian H. Williams,et al.  Transition-state structural refinement with GRACE and CHARMM: Flexible QM/MM modelling for lactate dehydrogenase , 1999 .

[18]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[19]  A. Chakraborty,et al.  A growing string method for determining transition states: comparison to the nudged elastic band and string methods. , 2004, The Journal of chemical physics.

[20]  Stefan Goedecker,et al.  Linear scaling relaxation of the atomic positions in nanostructures , 2001 .

[21]  José M. Lluch,et al.  The search for stationary points on a quantum mechanical/molecular mechanical potential-energy surface , 2002 .

[22]  Ching-Hsing Yu,et al.  Ab Initio Geometry Determinations of Proteins. 1. Crambin , 1998 .

[23]  H. Schaefer,et al.  Disilyne (Si2H2) revisited , 1990 .

[24]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .

[25]  Walter Thiel,et al.  Linear scaling geometry optimisation and transition state search in hybrid delocalised internal coordinates , 2000 .

[26]  Gustavo E. Scuseria,et al.  Geometry Optimization of Kringle 1 of Plasminogen Using the PM3 Semiempirical Method , 2000 .

[27]  Peter Pulay,et al.  Ab initio geometry optimization for large molecules , 1997, J. Comput. Chem..

[28]  E. Vanden-Eijnden,et al.  String method for the study of rare events , 2002, cond-mat/0205527.

[29]  A. V. Duin,et al.  ReaxFFSiO Reactive Force Field for Silicon and Silicon Oxide Systems , 2003 .

[30]  Peter Pulay,et al.  Systematic AB Initio Gradient Calculation of Molecular Geometries, Force Constants, and Dipole Moment Derivatives , 1979 .

[31]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[32]  H. Bernhard Schlegel,et al.  Methods for optimizing large molecules. Part III. An improved algorithm for geometry optimization using direct inversion in the iterative subspace (GDIIS) , 2002 .

[33]  R. Ahlrichs,et al.  Geometry optimization in generalized natural internal coordinates , 1999 .

[34]  Peter Pulay,et al.  Geometry optimization by direct inversion in the iterative subspace , 1984 .

[35]  Ajit Banerjee,et al.  Search for stationary points on surfaces , 1985 .

[36]  Olivier Coulaud,et al.  An efficient method for the coordinate transformation problem of massively three-dimensional networks , 2001 .

[37]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[38]  H. Bernhard Schlegel,et al.  Methods for geometry optimization of large molecules. I. An O(N2) algorithm for solving systems of linear equations for the transformation of coordinates and forces , 1998 .

[39]  Emilio Artacho,et al.  Model Hessian for accelerating first-principles structure optimizations , 2003 .

[40]  D. Wales,et al.  When do gradient optimisations converge to saddle points , 1992 .

[41]  Trygve Helgaker,et al.  The efficient optimization of molecular geometries using redundant internal coordinates , 2002 .