The quasi-independent curvilinear coordinate approximation for geometry optimization.
暂无分享,去创建一个
[1] Peter Pulay,et al. Newtonian molecular dynamics in general curvilinear internal coordinates , 2002 .
[2] Jon Baker,et al. Techniques for geometry optimization: A comparison of cartesian and natural internal coordinates , 1993, J. Comput. Chem..
[3] J. C. Phillips,et al. Constraint theory, vector percolation and glass formation , 1985 .
[4] H. Bernhard Schlegel,et al. Exploring potential energy surfaces for chemical reactions: An overview of some practical methods , 2003, J. Comput. Chem..
[5] A. V. Duin,et al. ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .
[6] Roland Lindh,et al. ON THE USE OF A HESSIAN MODEL FUNCTION IN MOLECULAR GEOMETRY OPTIMIZATIONS , 1995 .
[7] James B. Adams,et al. Interatomic Potentials from First-Principles Calculations: The Force-Matching Method , 1993, cond-mat/9306054.
[8] Jon Baker,et al. Geometry optimization of large biomolecules in redundant internal coordinates , 2000 .
[9] Peter Pulay,et al. The calculation of ab initio molecular geometries: efficient optimization by natural internal coordinates and empirical correction by offset forces , 1992 .
[10] Peter Pulay,et al. An efficient direct method for geometry optimization of large molecules in internal coordinates , 1998 .
[11] H. Schlegel,et al. Optimization of equilibrium geometries and transition structures , 1982 .
[12] Jon Baker,et al. The generation and use of delocalized internal coordinates in geometry optimization , 1996 .
[13] L. Schäfer,et al. Normal coordinate ab initio force relaxation , 1978 .
[14] John C. Slater,et al. Atomic Radii in Crystals , 1964 .
[15] R. Fletcher. Practical Methods of Optimization , 1988 .
[16] Olivier Coulaud,et al. Linear scaling algorithm for the coordinate transformation problem of molecular geometry optimization , 2000 .
[17] Ian H. Williams,et al. Transition-state structural refinement with GRACE and CHARMM: Flexible QM/MM modelling for lactate dehydrogenase , 1999 .
[18] J. Nocedal. Updating Quasi-Newton Matrices With Limited Storage , 1980 .
[19] A. Chakraborty,et al. A growing string method for determining transition states: comparison to the nudged elastic band and string methods. , 2004, The Journal of chemical physics.
[20] Stefan Goedecker,et al. Linear scaling relaxation of the atomic positions in nanostructures , 2001 .
[21] José M. Lluch,et al. The search for stationary points on a quantum mechanical/molecular mechanical potential-energy surface , 2002 .
[22] Ching-Hsing Yu,et al. Ab Initio Geometry Determinations of Proteins. 1. Crambin , 1998 .
[23] H. Schaefer,et al. Disilyne (Si2H2) revisited , 1990 .
[24] Peter Pulay,et al. Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .
[25] Walter Thiel,et al. Linear scaling geometry optimisation and transition state search in hybrid delocalised internal coordinates , 2000 .
[26] Gustavo E. Scuseria,et al. Geometry Optimization of Kringle 1 of Plasminogen Using the PM3 Semiempirical Method , 2000 .
[27] Peter Pulay,et al. Ab initio geometry optimization for large molecules , 1997, J. Comput. Chem..
[28] E. Vanden-Eijnden,et al. String method for the study of rare events , 2002, cond-mat/0205527.
[29] A. V. Duin,et al. ReaxFFSiO Reactive Force Field for Silicon and Silicon Oxide Systems , 2003 .
[30] Peter Pulay,et al. Systematic AB Initio Gradient Calculation of Molecular Geometries, Force Constants, and Dipole Moment Derivatives , 1979 .
[31] K. Burke,et al. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .
[32] H. Bernhard Schlegel,et al. Methods for optimizing large molecules. Part III. An improved algorithm for geometry optimization using direct inversion in the iterative subspace (GDIIS) , 2002 .
[33] R. Ahlrichs,et al. Geometry optimization in generalized natural internal coordinates , 1999 .
[34] Peter Pulay,et al. Geometry optimization by direct inversion in the iterative subspace , 1984 .
[35] Ajit Banerjee,et al. Search for stationary points on surfaces , 1985 .
[36] Olivier Coulaud,et al. An efficient method for the coordinate transformation problem of massively three-dimensional networks , 2001 .
[37] M. Karplus,et al. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .
[38] H. Bernhard Schlegel,et al. Methods for geometry optimization of large molecules. I. An O(N2) algorithm for solving systems of linear equations for the transformation of coordinates and forces , 1998 .
[39] Emilio Artacho,et al. Model Hessian for accelerating first-principles structure optimizations , 2003 .
[40] D. Wales,et al. When do gradient optimisations converge to saddle points , 1992 .
[41] Trygve Helgaker,et al. The efficient optimization of molecular geometries using redundant internal coordinates , 2002 .