Critical Edge Behavior and the Bessel to Airy Transition in the Singularly Perturbed Laguerre Unitary Ensemble
暂无分享,去创建一个
Dan Dai | Shuai-Xia Xu | Shuai‐Xia Xu | Yuqiu Zhao | D. Dai | Yu-Qiu Zhao
[1] M. Y. Mo,et al. A Matrix Model with a Singular Weight and Painlevé III , 2010, 1003.2964.
[2] Christophe Texier,et al. Wigner time-delay distribution in chaotic cavities and freezing transition. , 2013, Physical review letters.
[3] G. Szegő. Zeros of orthogonal polynomials , 1939 .
[4] Pavel Bleher,et al. Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.
[5] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[6] M. Vanlessen,et al. Strong Asymptotics of Laguerre-Type Orthogonal Polynomials and Applications in Random Matrix Theory , 2005 .
[7] Roderick Wong,et al. Global asymptotic expansions of the Laguerre polynomials—a Riemann–Hilbert approach , 2008, Numerical Algorithms.
[8] Tom Claeys,et al. Universality in unitary random matrix ensembles when the soft edge meets the hard edge , 2007 .
[9] P. Deift. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .
[10] Athanassios S. Fokas,et al. Painleve Transcendents: The Riemann-hilbert Approach , 2006 .
[11] Maarten Vanlessen,et al. Universality for eigenvalue correlations from the modified Jacobi unitary ensemble , 2002 .
[12] Doron S Lubinsky. A New Approach to Universality Limits Involving Orthogonal Polynomials , 2007 .
[13] Athanassios S. Fokas,et al. On the solvability of Painlevé II and IV , 1992 .
[14] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[15] Shuai-Xia Xu,et al. UNIFORM ASYMPTOTICS OF A SYSTEM OF SZEGÖ CLASS POLYNOMIALS VIA THE RIEMANN–HILBERT APPROACH , 2011 .
[16] W. Van Assche,et al. The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [-1,1] , 2001 .
[17] I. Krasovsky. Aspects of Toeplitz Determinants , 2010, 1007.1128.
[18] F. Mezzadri,et al. Tau-Function Theory of Chaotic Quantum Transport with β = 1, 2, 4 , 2012, 1206.4584.
[19] M. Y. Mo,et al. On an average over the Gaussian Unitary Ensemble , 2009, 0903.5450.
[20] Stephanos Venakides,et al. UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .
[21] P. Forrester. The spectrum edge of random matrix ensembles , 1993 .
[22] Shuai‐Xia Xu,et al. Universality for eigenvalue correlations from the unitary ensemble associated with a family of singular weights , 2011 .
[23] Shuai-Xia Xu,et al. Painlevé XXXIV Asymptotics of Orthogonal Polynomials for the Gaussian Weight with a Jump at the Edge , 2011 .
[24] A. Its,et al. Hankel determinant and orthogonal polynomials for the Gaussian weight with a jump , 2007, 0706.3192.
[25] D. Dai. On a Pollaczek-Jacobi type orthogonal polynomials , 2009 .
[26] A. Kuijlaars,et al. Asymptotics for a special solution of the thirty fourth Painlevé equation , 2008, 0811.3847.
[27] A. S. Fokas,et al. The Isomonodromy Approach to Matrix Models in 2 D Quantum Gravity , 2004 .
[28] Lun Zhang,et al. The recurrence coefficients of semi-classical Laguerre polynomials and the fourth Painlevé equation , 2011, 1105.5229.
[29] Athanassios S. Fokas,et al. The isomonodromy approach to matric models in 2D quantum gravity , 1992 .
[30] Craig A. Tracy,et al. Mathematical Physics © Springer-Verlag 1994 Level Spacing Distributions and the Bessel Kernel , 1993 .
[31] V. Marčenko,et al. DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .
[32] Ronald F. Boisvert,et al. NIST Handbook of Mathematical Functions , 2010 .
[33] Yang Chen,et al. Painlevé V and a Pollaczek-Jacobi type orthogonal polynomials , 2008, J. Approx. Theory.
[34] Structure of Kernels and Cokernels of Toeplitz Plus Hankel Operators , 2013, 1309.7574.
[35] P. Forrester. Log-Gases and Random Matrices , 2010 .
[36] K. M. Frahm,et al. Quantum mechanical time-delay matrix in chaotic scattering. , 1997 .
[37] M. Wadati,et al. Correlation Functions of Random Matrix Ensembles Related to Classical Orthogonal Polynomials. III , 1992 .
[38] Stephanos Venakides,et al. Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .
[39] Yang Chen,et al. Painlevé III and a singular linear statistics in Hermitian random matrix ensembles, I , 2008, J. Approx. Theory.
[40] Yuqiu Zhao,et al. Uniform asymptotics of the Pollaczek polynomials via the Riemann–Hilbert approach , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[41] P. Deift,et al. Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher-Hartwig singularities , 2009, 0905.0443.
[42] A. Its,et al. Emergence of a singularity for Toeplitz determinants and Painlevé V , 2010, 1004.3696.
[43] M. Berry,et al. Tuck's incompressibility function: statistics for zeta zeros and eigenvalues , 2008, 0807.3474.
[44] A. Kuijlaars,et al. Multi-critical unitary random matrix ensembles and the general Painlevé II equation , 2005 .
[45] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[46] S. Lukyanov. Finite Temperature Expectation Values of Local Fields in the sinh-Gordon model , 2000 .
[47] P. B. Kahn,et al. Higher Order Spacing Distributions for a Class of Unitary Ensembles , 1964 .
[48] Shuai-Xia Xu,et al. Critical edge behavior in the modified Jacobi ensemble and the Painlevé V transcendents , 2013 .
[49] A. Kuijlaars,et al. Critical Edge Behavior in Unitary Random Matrix Ensembles and the Thirty-Fourth Painlevé Transcendent , 2007, 0704.1972.
[50] B. Silbermann,et al. Some results on the invertibility of Toeplitz plus Hankel operators , 2013, 1306.2837.