Critical Edge Behavior and the Bessel to Airy Transition in the Singularly Perturbed Laguerre Unitary Ensemble

AbstractIn this paper, we study the singularly perturbed Laguerre unitary ensemble $$\frac{1}{Z_n} ({\rm det}\,\, M)^\alpha e^{- {\rm tr}\, V_t(M)}dM, \qquad \alpha > 0,$$1Zn(detM)αe-trVt(M)dM,α>0,with $${V_t(x) = x + t/x,\,\, x \in (0,+\infty)}$$Vt(x)=x+t/x,x∈(0,+∞) and t >  0. Due to the effect of t/x for varying t, the eigenvalue correlation kernel has a new limit instead of the usual Bessel kernel at the hard edge 0. This limiting kernel involves $${\psi}$$ψ-functions associated with a special solution to a new third-order nonlinear differential equation, which is then shown to be equivalent to a particular Painlevé III equation. The transition of this limiting kernel to the Bessel and Airy kernels is also studied when the parameter t changes in a finite interval (0, d]. Our approach is based on Deift–Zhou nonlinear steepest descent method for Riemann–Hilbert problems.

[1]  M. Y. Mo,et al.  A Matrix Model with a Singular Weight and Painlevé III , 2010, 1003.2964.

[2]  Christophe Texier,et al.  Wigner time-delay distribution in chaotic cavities and freezing transition. , 2013, Physical review letters.

[3]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[4]  Pavel Bleher,et al.  Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.

[5]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[6]  M. Vanlessen,et al.  Strong Asymptotics of Laguerre-Type Orthogonal Polynomials and Applications in Random Matrix Theory , 2005 .

[7]  Roderick Wong,et al.  Global asymptotic expansions of the Laguerre polynomials—a Riemann–Hilbert approach , 2008, Numerical Algorithms.

[8]  Tom Claeys,et al.  Universality in unitary random matrix ensembles when the soft edge meets the hard edge , 2007 .

[9]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[10]  Athanassios S. Fokas,et al.  Painleve Transcendents: The Riemann-hilbert Approach , 2006 .

[11]  Maarten Vanlessen,et al.  Universality for eigenvalue correlations from the modified Jacobi unitary ensemble , 2002 .

[12]  Doron S Lubinsky A New Approach to Universality Limits Involving Orthogonal Polynomials , 2007 .

[13]  Athanassios S. Fokas,et al.  On the solvability of Painlevé II and IV , 1992 .

[14]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[15]  Shuai-Xia Xu,et al.  UNIFORM ASYMPTOTICS OF A SYSTEM OF SZEGÖ CLASS POLYNOMIALS VIA THE RIEMANN–HILBERT APPROACH , 2011 .

[16]  W. Van Assche,et al.  The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [-1,1] , 2001 .

[17]  I. Krasovsky Aspects of Toeplitz Determinants , 2010, 1007.1128.

[18]  F. Mezzadri,et al.  Tau-Function Theory of Chaotic Quantum Transport with β = 1, 2, 4 , 2012, 1206.4584.

[19]  M. Y. Mo,et al.  On an average over the Gaussian Unitary Ensemble , 2009, 0903.5450.

[20]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[21]  P. Forrester The spectrum edge of random matrix ensembles , 1993 .

[22]  Shuai‐Xia Xu,et al.  Universality for eigenvalue correlations from the unitary ensemble associated with a family of singular weights , 2011 .

[23]  Shuai-Xia Xu,et al.  Painlevé XXXIV Asymptotics of Orthogonal Polynomials for the Gaussian Weight with a Jump at the Edge , 2011 .

[24]  A. Its,et al.  Hankel determinant and orthogonal polynomials for the Gaussian weight with a jump , 2007, 0706.3192.

[25]  D. Dai On a Pollaczek-Jacobi type orthogonal polynomials , 2009 .

[26]  A. Kuijlaars,et al.  Asymptotics for a special solution of the thirty fourth Painlevé equation , 2008, 0811.3847.

[27]  A. S. Fokas,et al.  The Isomonodromy Approach to Matrix Models in 2 D Quantum Gravity , 2004 .

[28]  Lun Zhang,et al.  The recurrence coefficients of semi-classical Laguerre polynomials and the fourth Painlevé equation , 2011, 1105.5229.

[29]  Athanassios S. Fokas,et al.  The isomonodromy approach to matric models in 2D quantum gravity , 1992 .

[30]  Craig A. Tracy,et al.  Mathematical Physics © Springer-Verlag 1994 Level Spacing Distributions and the Bessel Kernel , 1993 .

[31]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[32]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[33]  Yang Chen,et al.  Painlevé V and a Pollaczek-Jacobi type orthogonal polynomials , 2008, J. Approx. Theory.

[34]  Structure of Kernels and Cokernels of Toeplitz Plus Hankel Operators , 2013, 1309.7574.

[35]  P. Forrester Log-Gases and Random Matrices , 2010 .

[36]  K. M. Frahm,et al.  Quantum mechanical time-delay matrix in chaotic scattering. , 1997 .

[37]  M. Wadati,et al.  Correlation Functions of Random Matrix Ensembles Related to Classical Orthogonal Polynomials. III , 1992 .

[38]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[39]  Yang Chen,et al.  Painlevé III and a singular linear statistics in Hermitian random matrix ensembles, I , 2008, J. Approx. Theory.

[40]  Yuqiu Zhao,et al.  Uniform asymptotics of the Pollaczek polynomials via the Riemann–Hilbert approach , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[41]  P. Deift,et al.  Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher-Hartwig singularities , 2009, 0905.0443.

[42]  A. Its,et al.  Emergence of a singularity for Toeplitz determinants and Painlevé V , 2010, 1004.3696.

[43]  M. Berry,et al.  Tuck's incompressibility function: statistics for zeta zeros and eigenvalues , 2008, 0807.3474.

[44]  A. Kuijlaars,et al.  Multi-critical unitary random matrix ensembles and the general Painlevé II equation , 2005 .

[45]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[46]  S. Lukyanov Finite Temperature Expectation Values of Local Fields in the sinh-Gordon model , 2000 .

[47]  P. B. Kahn,et al.  Higher Order Spacing Distributions for a Class of Unitary Ensembles , 1964 .

[48]  Shuai-Xia Xu,et al.  Critical edge behavior in the modified Jacobi ensemble and the Painlevé V transcendents , 2013 .

[49]  A. Kuijlaars,et al.  Critical Edge Behavior in Unitary Random Matrix Ensembles and the Thirty-Fourth Painlevé Transcendent , 2007, 0704.1972.

[50]  B. Silbermann,et al.  Some results on the invertibility of Toeplitz plus Hankel operators , 2013, 1306.2837.