Effect of maleic acid content on the thermal stability, swelling behaviour and network structure of gelatin-based hydrogels prepared by gamma irradiation

[1]  D. Şolpan,et al.  Removal of cationic dyes by poly(acrylamide-co-acrylic acid) hydrogels in aqueous solutions , 2008 .

[2]  E. Hegazy,et al.  Radiation synthesis and characterization of poly(N‐vinyl‐2‐pyrrolidone/acrylic acid) and poly(N‐vinyl‐2‐pyrrolidone/acrylamide) hydrogels for some metal‐ion separation , 2004 .

[3]  T. Caykara,et al.  Effect of maleic acid content on network structure and swelling properties of poly(N-isopropylacrylamide-co-maleic acid) polyelectrolyte hydrogels , 2004 .

[4]  Nilhan Kayaman‐Apohan,et al.  pH-thermoreversible hydrogels. I. Synthesis and characterization of poly( N-isopropylacrylamide/maleic acid) copolymeric hydrogels , 2004 .

[5]  M. Šen,et al.  Changing of network characteristics of acrylamide/maleic acid hydrogels by alteration of irradiation dose rate , 2003 .

[6]  T. Caykara,et al.  Thermal behavior of poly(2-hydroxyethyl methacrylate-maleic acid) networks , 2003 .

[7]  O. Güven,et al.  The use of immobilized Saccharomyces cerevisiae on radiation crosslinked acrylamide–maleic acid hydrogel carriers for production of ethyl alcohol , 2002, Process Biochemistry.

[8]  Nicholas A Peppas,et al.  Molecular imprinting within hydrogels. , 2002, Advanced drug delivery reviews.

[9]  O. Güven,et al.  Equilibrium swelling behavior of pH‐ and temperature‐sensitive poly(N‐vinyl 2‐pyrrolidone‐g‐citric acid) polyelectrolyte hydrogels , 2000 .

[10]  O. Güven,et al.  Controlled release of terbinafine hydrochloride from pH sensitive poly(acrylamide/maleic acid) hydrogels. , 2000, International journal of pharmaceutics.

[11]  O. Okay,et al.  Swelling of strong polyelectrolyte hydrogels in polymer solutions: effect of ion pair formation on the polymer collapse , 2000 .

[12]  O. Okay,et al.  Phase separation during the formation of poly(acrylamide) hydrogels , 2000 .

[13]  Z. I. Ali,et al.  Structure-property behaviour of electron beam irradiated polytetrafluoroethylene and polytetrafluoroethylene-co-hexafluoropropylene , 2000 .

[14]  O. Güven,et al.  A review on the radiation synthesis of copolymeric hydrogels for adsorption and separation purposes , 1999 .

[15]  O. Güven,et al.  Adsorption of α-amylase onto poly(acrylamide/maleic acid) hydrogels , 1999 .

[16]  J. Rosiak,et al.  Synthesis of hydrogels by irradiation of polymers in aqueous solution , 1999 .

[17]  L. Vervoort,et al.  Inulin hydrogels. I. Dynamic and equilibrium swelling properties , 1998 .

[18]  R. Spontak,et al.  Microporous, Responsive Hydroxypropyl Cellulose Gels. 1. Synthesis and Microstructure , 1998 .

[19]  O. Güven,et al.  Prediction of swelling behaviour of hydrogels containing diprotic acid moieties , 1998 .

[20]  G. Wegner,et al.  Polyacrylamide Hydrogels with Trapped Polyelectrolyte Rods , 1998 .

[21]  J. Filipović,et al.  The thermal degradation of some alkali metal salts of poly(itaconic acid) , 1997 .

[22]  Dursun Saraydın,et al.  Acrylamide/maleic acid hydrogels , 1995 .

[23]  J. V. Dyke,et al.  Thermogravimetric study of polyacrylamide with evolved gas analysis , 1993 .

[24]  R. Audebert,et al.  Complexation of acrylic acid copolymers with polybases: importance of cooperative effects , 1991 .

[25]  Toyoichi Tanaka Collapse of Gels and the Critical Endpoint , 1978 .

[26]  Joseph H. Flynn,et al.  A quick, direct method for the determination of activation energy from thermogravimetric data , 1966 .

[27]  Adolphe Chapiro,et al.  Radiation Chemistry of Polymeric Systems , 1962 .

[28]  David A. Anderson,et al.  The kinetics of the thermal degradation of polystyrene and polyethylene , 1961 .