The convex hull of a regular set of integer vectors is polyhedral and effectively computable

Number Decision Diagrams (NDD) provide a natural finite symbolic representation for regular set of integer vectors encoded as strings of digit vectors (least or most significant digit first). The convex hull of the set of vectors represented by a NDD is proved to be an effectively computable convex polyhedron. , Sweden, April 1996, in: Lecture Notes in Comput. Sci., vol. 1059, Springer, Berlin, 1996, pp. 30-43; V. Bruyere, G. Hansel, C. Michaux, R. Villemaire, Logic and p-recognizable sets of integers, Bull. Belg. Math. Soc. 1 (2) (1994) 191] provide a natural finite symbolic representation for regular set of integer vectors encoded as strings of digit vectors (least or most significant digit first). The convex hull of the set of vectors represented by a NDD is proved to be an effectively computable convex polyhedron.

[1]  A. Kasher Review: Seymour Ginsburg, Edwin H. Spanier, Semigroups, Presburger Formulas, and Languages , 1969 .

[2]  Nicolas Halbwachs,et al.  Automatic discovery of linear restraints among variables of a program , 1978, POPL.

[3]  Leonard Berman,et al.  Precise bounds for presburger arithmetic and the reals with addition: Preliminary report , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[4]  Nicolas Halbwachs,et al.  Verification of Real-Time Systems using Linear Relation Analysis , 1997, Formal Methods Syst. Des..

[5]  S. Ginsburg,et al.  Semigroups, Presburger formulas, and languages. , 1966 .

[6]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Presburger Arithmetic Constraints (Extended Abstract) , 1995, SAS.

[7]  Hubert Comon-Lundh,et al.  Diophantine Equations, Presburger Arithmetic and Finite Automata , 1996, CAAP.

[8]  Tevfik Bultan,et al.  Efficient Symbolic Representations for Arithmetic Constraints in Verification , 2003, Int. J. Found. Comput. Sci..

[9]  David L. Dill,et al.  Deciding Presburger Arithmetic by Model Checking and Comparisons with Other Methods , 2002, FMCAD.

[10]  L. Latour From automata to formulas: convex integer polyhedra , 2004, LICS 2004.

[11]  Laure Petrucci,et al.  FAST: Fast Acceleration of Symbolikc Transition Systems , 2003, CAV.

[12]  Pierre Wolper,et al.  On the Construction of Automata from Linear Arithmetic Constraints , 2000, TACAS.

[13]  Bernard Boigelot Symbolic Methods for Exploring Infinite State Spaces , 1998 .

[14]  C. Michaux,et al.  LOGIC AND p-RECOGNIZABLE SETS OF INTEGERS , 1994 .

[15]  Andrei Voronkov,et al.  BRAIN : Backward Reachability Analysis with Integers , 2002, AMAST.