Highly accelerated cardiovascular MR imaging using many channel technology: concepts and clinical applications

Cardiovascular magnetic resonance imaging (CVMRI) is of proven clinical value in the non-invasive imaging of cardiovascular diseases. CVMRI requires rapid image acquisition, but acquisition speed is fundamentally limited in conventional MRI. Parallel imaging provides a means for increasing acquisition speed and efficiency. However, signal-to-noise (SNR) limitations and the limited number of receiver channels available on most MR systems have in the past imposed practical constraints, which dictated the use of moderate accelerations in CVMRI. High levels of acceleration, which were unattainable previously, have become possible with many-receiver MR systems and many-element, cardiac-optimized RF-coil arrays. The resulting imaging speed improvements can be exploited in a number of ways, ranging from enhancement of spatial and temporal resolution to efficient whole heart coverage to streamlining of CVMRI work flow. In this review, examples of these strategies are provided, following an outline of the fundamentals of the highly accelerated imaging approaches employed in CVMRI. Topics discussed include basic principles of parallel imaging; key requirements for MR systems and RF-coil design; practical considerations of SNR management, supported by multi-dimensional accelerations, 3D noise averaging and high field imaging; highly accelerated clinical state-of-the art cardiovascular imaging applications spanning the range from SNR-rich to SNR-limited; and current trends and future directions.

[1]  R Frayne,et al.  Time‐resolved contrast‐enhanced 3D MR angiography , 1996, Magnetic resonance in medicine.

[2]  O. Simonetti,et al.  "Black blood" T2-weighted inversion-recovery MR imaging of the heart. , 1996, Radiology.

[3]  W. Manning,et al.  Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays , 1997, Magnetic resonance in medicine.

[4]  N J Pelc,et al.  Unaliasing by Fourier‐encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI , 1999, Magnetic resonance in medicine.

[5]  René M. Botnar,et al.  Submillimeter three-dimensional coronary MR angiography with real-time navigator correction: comparison of navigator locations. , 1999, Radiology.

[6]  O. Simonetti,et al.  Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. , 1999, Circulation.

[7]  R. Edelman,et al.  Accelerated cardiac imaging using the SMASH technique. , 1999, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[8]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[9]  Peter Boesiger,et al.  Cardiac real‐time imaging using SENSE , 2000 .

[10]  R. Edelman,et al.  Contrast-enhanced 3D MR angiography with simultaneous acquisition of spatial harmonics: A pilot study. , 2000, Radiology.

[11]  K P Pruessmann,et al.  Cardiac real-time imaging using SENSE. SENSitivity Encoding scheme. , 2000, Magnetic resonance in medicine.

[12]  D. Kacher,et al.  Sensitivity profiles from an array of coils for encoding and reconstruction in parallel (SPACE RIP) , 2000, Magnetic resonance in medicine.

[13]  P. Boesiger,et al.  Contrast‐enhanced 3D MRA using SENSE , 2000, Journal of magnetic resonance imaging : JMRI.

[14]  P. Boesiger,et al.  Advances in sensitivity encoding with arbitrary k‐space trajectories , 2001, Magnetic resonance in medicine.

[15]  K P Pruessmann,et al.  Sensitivity encoded cardiac MRI. , 2001, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[16]  F H Epstein,et al.  Adaptive sensitivity encoding incorporating temporal filtering (TSENSE) † , 2001, Magnetic resonance in medicine.

[17]  D. Sodickson,et al.  A generalized approach to parallel magnetic resonance imaging. , 2001, Medical physics.

[18]  S. Wolff,et al.  First-pass myocardial perfusion MR imaging with interleaved notched saturation: feasibility study. , 2001, Radiology.

[19]  T. Grist,et al.  Technical developments in MR angiography. , 2002, Radiologic clinics of North America.

[20]  E. McVeigh,et al.  Phase‐sensitive inversion recovery for detecting myocardial infarction using gadolinium‐delayed hyperenhancement † , 2002, Magnetic resonance in medicine.

[21]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[22]  D. Sodickson,et al.  Ultimate intrinsic signal‐to‐noise ratio for parallel MRI: Electromagnetic field considerations , 2003, Magnetic resonance in medicine.

[23]  Peter Boesiger,et al.  k‐t BLAST and k‐t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations , 2003, Magnetic resonance in medicine.

[24]  P. Börnert,et al.  Transmit SENSE , 2003, Magnetic resonance in medicine.

[25]  Kate McLeish,et al.  Free‐breathing radial acquisitions of the heart , 2004, Magnetic resonance in medicine.

[26]  P. Boesiger,et al.  Electrodynamics and ultimate SNR in parallel MR imaging , 2004, Magnetic resonance in medicine.

[27]  Manojkumar Saranathan,et al.  Large field‐of‐view real‐time MRI with a 32‐channel system , 2004, Magnetic resonance in medicine.

[28]  Juan M. Santos,et al.  Real‐time cardiac MRI at 3 tesla , 2004, Magnetic resonance in medicine.

[29]  Thoralf Niendorf,et al.  Highly parallel volumetric imaging with a 32‐element RF coil array , 2004, Magnetic resonance in medicine.

[30]  Yudong Zhu,et al.  Parallel excitation with an array of transmit coils , 2004, Magnetic resonance in medicine.

[31]  Renxin Chu,et al.  Scalable multichannel MRI data acquisition system , 2004, Magnetic resonance in medicine.

[32]  J. Lima,et al.  Cardiovascular magnetic resonance imaging: current and emerging applications. , 2004, Journal of the American College of Cardiology.

[33]  Jianmin Wang,et al.  Field‐of‐view limitations in parallel imaging , 2004, Magnetic resonance in medicine.

[34]  Bruno Madore,et al.  UNFOLD‐SENSE: A parallel MRI method with self‐calibration and artifact suppression , 2004, Magnetic resonance in medicine.

[35]  Warren J Manning,et al.  Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report. , 2004, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[36]  S. Schoenberg,et al.  Cardiovascular screening with parallel imaging techniques and a whole-body MR imager. , 2005, Radiology.

[37]  M. Griswold,et al.  A 32 Channel Cardiac Array Optimized for Parallel Imaging , 2005 .

[38]  S. Dymarkowski,et al.  Delayed contrast–enhanced MRI: use in myocardial viability assessment and other cardiac pathology , 2005, European radiology.

[39]  Martin Requardt,et al.  Whole‐body MR angiography using a novel 32‐receiving‐channel MR system with surface coil technology: First clinical experience , 2005, Journal of magnetic resonance imaging : JMRI.

[40]  M. McDougall,et al.  64‐channel array coil for single echo acquisition magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[41]  Thoralf Niendorf,et al.  Short breath‐hold, volumetric coronary MR angiography employing steady‐state free precession in conjunction with parallel imaging , 2005, Magnetic resonance in medicine.

[42]  M. Prince,et al.  Emerging functional MR angiographic techniques. , 2005, Magnetic resonance imaging clinics of North America.

[43]  Peter Kellman,et al.  Image reconstruction in SNR units: A general method for SNR measurement † , 2005, Magnetic resonance in medicine.

[44]  Daniel K Sodickson,et al.  3Parallel magnetic resonance imaging with adaptive radius in k‐space (PARS): Constrained image reconstruction using k‐space locality in radiofrequency coil encoded data , 2005, Magnetic resonance in medicine.

[45]  D. Parker,et al.  On the dark rim artifact in dynamic contrast‐enhanced MRI myocardial perfusion studies , 2005, Magnetic resonance in medicine.

[46]  Guillem Pons-Lladó Assessment of cardiac function by CMR , 2005, European radiology.

[47]  R. Mohiaddin,et al.  Applications of phase-contrast flow and velocity imaging in cardiovascular MRI , 2005, European Radiology.

[48]  Thoralf Niendorf,et al.  Rapid volumetric MRI using parallel imaging with order-of-magnitude accelerations and a 32-element RF coil array: feasibility and implications. , 2005, Academic radiology.

[49]  P. Börnert,et al.  Free‐breathing whole‐heart coronary MRA with 3D radial SSFP and self‐navigated image reconstruction , 2005, Magnetic resonance in medicine.

[50]  R. Fattori,et al.  Congenital diseases of the thoracic aorta. Role of MRI and MRA , 2006, European Radiology.

[51]  S. Schoenberg,et al.  Practical approaches to the evaluation of signal‐to‐noise ratio performance with parallel imaging: Application with cardiac imaging and a 32‐channel cardiac coil , 2005, Magnetic resonance in medicine.

[52]  René M. Botnar,et al.  Coronary magnetic resonance imaging: visualization of the vessel lumen and the vessel wall and molecular imaging of arteriothrombosis , 2005, European Radiology.

[53]  D. Sodickson,et al.  [Acceleration of cardiovascular MRI using parallel imaging: basic principles, practical considerations, clinical applications and future directions]. , 2006, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[54]  C. Hardy,et al.  32‐element receiver‐coil array for cardiac imaging , 2006, Magnetic resonance in medicine.

[55]  S. Schoenberg,et al.  Phase-Sensitive Inversion Recovery (PSIR) Single-Shot TrueFISP for Assessment of Myocardial Infarction at 3 Tesla , 2006, Investigative radiology.

[56]  Horst Urbach,et al.  4D Time-resolved angiography with CENTRA Keyhole (4D-TRAK) and SENSE using a total acceleration factor of 60 as compared with catheter angiography in patients with cerebral arteriovenous malformations at 3.0T , 2006 .

[57]  Dwight G Nishimura,et al.  Single breath‐hold whole‐heart MRA using variable‐density spirals at 3t , 2006, Magnetic resonance in medicine.

[58]  Thoralf Niendorf,et al.  Toward single breath‐hold whole‐heart coverage coronary MRA using highly accelerated parallel imaging with a 32‐channel MR system , 2006, Magnetic resonance in medicine.

[59]  Peter Börnert,et al.  Free‐breathing whole‐heart coronary MR angiography on a clinical scanner in four minutes , 2006, Journal of magnetic resonance imaging : JMRI.

[60]  S. Schoenberg,et al.  Cardiac CINE MR imaging with a 32‐channel cardiac coil and parallel imaging: Impact of acceleration factors on image quality and volumetric accuracy , 2006, Journal of magnetic resonance imaging : JMRI.

[61]  D Sodickson,et al.  Beschleunigung der kardiovaskulären MRT mittels paralleler Bildgebung: Grundlagen, praktische Aspekte, klinische Anwendungen und Perspektiven , 2005 .

[62]  J. Finn,et al.  Renal Magnetic Resonance Angiography at 3.0 Tesla Using a 32-Element Phased-Array Coil System and Parallel Imaging in 2 Directions , 2006, Investigative radiology.

[63]  Pierre Croisille,et al.  Contrast agents and cardiac MR imaging of myocardial ischemia: from bench to bedside , 2006, European Radiology.

[64]  Thoralf Niendorf,et al.  Parallel imaging in cardiovascular MRI: methods and applications , 2006, NMR in biomedicine.

[65]  S. Schoenberg,et al.  Dual breath-hold magnetic resonance cine evaluation of global and regional cardiac function , 2006, European Radiology.

[66]  J Paul Finn,et al.  Cardiac Cine Imaging at 3 Tesla: Initial Experience With a 32-Element Body-Array Coil , 2006, Investigative radiology.

[67]  R. Günther,et al.  Characterization of myocardial viability using MR and CT imaging , 2007, European Radiology.

[68]  Michael O Zenge,et al.  High‐resolution continuously acquired peripheral MR angiography featuring partial parallel imaging GRAPPA , 2006, Magnetic resonance in medicine.

[69]  Peter Boesiger,et al.  2D sense for faster 3D MRI , 2002, Magnetic Resonance Materials in Physics, Biology and Medicine.

[70]  M. Kouwenhoven,et al.  Highly accelerated, millimeter in-plane resolution myocardial perfusion imaging using a 32-channel 3.0 T MR system , 2007 .

[71]  Christina Triantafyllou,et al.  A 128‐channel receive‐only cardiac coil for highly accelerated cardiac MRI at 3 Tesla , 2008, Magnetic resonance in medicine.