Distortion of Hausdorff measures under Orlicz--Sobolev maps

A comprehensive theory of the effect of Orlicz-Sobolev maps, between Euclidean spaces, on subsets with zero or finite Hausdorff measure is offered. Arbitrary Orlicz-Sobolev spaces embedded into the space of continuous function and Hausdorff measures built upon general gauge functions are included in our discussion. An explicit formula for the distortion of the relevant gauge function under the action of these maps is exhibited in terms of the Young function defining the Orlicz-Sobolev space. New phenomena and features, related to the flexibility in the definition of the degree of integrability of weak derivatives of maps and in the notion of measure of sets, are detected. Classical results, dealing with standard Sobolev spaces and Hausdorff measures, are recovered, and their optimality is shown to hold in a refined stronger sense. Special instances available in the literature, concerning Young functions and gauge functions of non-power type, are also reproduced and, when not sharp, improved.

[1]  Jan Kristensen,et al.  The Trace Theorem, the Luzin N- and Morse–Sard Properties for the Sharp Case of Sobolev–Lorentz Mappings , 2017, Journal of geometric analysis.

[2]  M. Korobkov,et al.  On the Luzin N-property and the uncertainty principle for Sobolev mappings , 2017, Analysis & PDE.

[3]  A. Cianchi,et al.  Optimal domain spaces in Orlicz-Sobolev embeddings , 2017, Indiana University Mathematics Journal.

[4]  A. Cianchi,et al.  Smooth Approximation of Orlicz-Sobolev Maps Between Manifolds , 2016 .

[5]  P. Koskela,et al.  Dimension gap under Sobolev mappings , 2015 .

[6]  J. Bourgain,et al.  On the Morse–Sard property and level sets of Wn,1 Sobolev functions on ℝn , 2015 .

[7]  E. Sevost’yanov,et al.  Toward the theory of Orlicz–Sobolev classes , 2014 .

[8]  P. Koskela,et al.  Luzin's condition (N) and modulus of continuity , 2013, 1309.3094.

[9]  J. Tyson,et al.  Frequency of Sobolev and quasiconformal dimension distortion , 2013 .

[10]  J. Bourgain,et al.  On the Morse-Sard property and level sets of $W^{n,1}$ Sobolev functions on ${\mathbb R}^n$ , 2012, 1201.1416.

[11]  J. Bourgain,et al.  On the Morse-Sard Property and Level Sets of Sobolev and BV Functions , 2010, 1007.4408.

[12]  T. Rajala,et al.  Generalized Hausdorff dimension distortion in Euclidean spaces under Sobolev mappings , 2010, 1007.2091.

[13]  J. Verdera,et al.  Quasiconformal distortion of Riesz capacities and Hausdorff measures in the plane , 2010, 1002.1038.

[14]  M. Lacey,et al.  Astala’s conjecture on distortion of Hausdorff measures under quasiconformal maps in the plane , 2008, 0805.4711.

[15]  A. Cianchi,et al.  Differentiability properties of Orlicz-Sobolev functions , 2005 .

[16]  A. Cianchi,et al.  Optimal Orlicz-Sobolev embeddings , 2004 .

[17]  W. Ziemer,et al.  The co-area formula for Sobolev mappings , 2001, math/0112008.

[18]  R. Kaufman Sobolev spaces, dimension, and random series , 1999 .

[19]  P. Koskela,et al.  On functions with derivatives in a Lorentz space , 1999 .

[20]  A. Cianchi,et al.  Sobolev embeddings into BMO, VMO, andL∞ , 1998 .

[21]  L. Carleson Selected Problems on Exceptional Sets , 1998 .

[22]  L. Hedberg,et al.  Function Spaces and Potential Theory , 1995 .

[23]  S. Janson Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation , 1980 .

[24]  J. Strömberg Bounded mean oscillation with Orlicz norms and duality of Hardy spaces , 1976 .

[25]  Ihrer Grenzgebiete,et al.  Ergebnisse der Mathematik und ihrer Grenzgebiete , 1975, Sums of Independent Random Variables.

[26]  Jussi Väisälä,et al.  Lectures on n-Dimensional Quasiconformal Mappings , 1971 .

[27]  R. Davies Increasing Sequences of Sets and Hausdorff Measure , 1970 .

[28]  Yu. G. Reshetnyak Space mappings with bounded distortion , 1967 .

[29]  Hlawka Theory of the integral , 1939 .

[30]  S. Pfeifer The Geometry Of Fractal Sets , 2016 .

[31]  P. Honzík,et al.  DIMENSION DISTORTION OF IMAGES OF SETS UNDER SOBOLEV MAPPINGS , 2015 .

[32]  Jan Kristensen,et al.  ON THE MORSE-SARD THEOREM FOR THE SHARP CASE OF SOBOLEV MAPPINGS , 2014 .

[33]  W. Ziemer,et al.  Fine behavior of functions whose gradients are in an Orlicz space , 2009 .

[34]  R. Mauldin Ëëëäáaeae Èêçèèêìááë Çç Ààíëëçêêê Aeae Èãáaeae Åååëíêêë , 2007 .

[35]  F. W. GEHRINGt HAUSDORFF DIMENSION AND QUASICONFORMAL MAPPINGS , 2006 .

[36]  Cianchi Andrea Boundedness of solutions to variational problems under general growth conditions , 1997 .

[37]  Y. Pesin,et al.  Dimension theory in dynamical systems , 1997 .

[38]  A. Cianchi,et al.  Continuity properties of functions from Orlicz-Sobolev spaces and embedding theorems , 1996 .

[39]  Pertti Mattila,et al.  Geometry of sets and measures in Euclidean spaces , 1995 .

[40]  J. Peetre,et al.  Interpolation of Orlicz spaces , 1977 .