Keck Spectroscopy of Redshift z ~ 3 Galaxies in the Hubble Deep Field

We have obtained spectra with the 10 m Keck telescope of a sample of 24 galaxies having colors consistent with star-forming galaxies at redshifts 2 ≲ z ≲ 4.5 in the Hubble deep field (HDF). Eleven of these galaxies are confirmed to be at high redshift (zmed = 3.0), one is at z = 0.5, and the other 12 have uncertain redshifts but have spectra consistent with their being at z > 2. The spectra of the confirmed high-redshift galaxies show a diversity of features, including weak Lyα emission, strong Lyα breaks or damped Lyα absorption profiles, and the stellar and interstellar rest-UV absorption lines common to local starburst galaxies and high-redshift star-forming galaxies reported recently by others. The narrow profiles and low equivalent widths of C IV, Si IV, and N V absorption lines may imply low stellar metallicities. Combined with the five high-redshift galaxies in the HDF previously confirmed with Keck spectra by Steidel et al. (1996a), the 16 confirmed sources yield a comoving volume density of n ≥ 2.4 × 10-4 h503 Mpc-3 for q0 = 0.05, or n ≥ 1.1 × 10-3 h503 Mpc-3 for q0 = 0.5. These densities are 3-4 times higher than the recent estimates of Steidel et al. (1996b) based on ground-based photometry with slightly brighter limits and are comparable to estimates of the local volume density of galaxies brighter than L*. The high-redshift density measurement is only a lower limit and could be almost 3 times higher still if all 29 of the unconfirmed candidates in our original sample, including those not observed, are indeed also at high redshift. The galaxies are small but luminous, with half-light radii 1.8 < r1/2 < 6.5 h50−1 kpc and absolute magnitudes -21.5 > MB > -23. The HST images show a wide range of morphologies, including several with very close, small knots of emission embedded in wispy extended structures. Using rest-frame UV continuum fluxes with no dust correction, we calculate star formation rates in the range 7-24 or 3-9 h50−2 M☉ yr-1 for q0 = 0.05 and q0 = 0.5, respectively. These rates overlap those for local spiral and H II galaxies today, although they could be more than twice as high if dust extinction in the UV is significant. If the objects at z = 3 were simply to fade by 5 mag (assuming a 107 yr burst and passive evolution) without mergers in the 14 Gyr between then and now (for q0 = 0.05, h50 = 1.0), they would resemble average dwarf elliptical/spheroidal galaxies in both luminosity and size. However, the variety of morphologies and the high number density of z = 3 galaxies in the HDF suggest that they represent a range of physical processes and stages of galaxy formation and evolution, rather than any one class of object, such as massive ellipticals. A key issue remains the measurement of masses. These high-redshift objects are likely to be the low-mass, starbursting building blocks of more massive galaxies seen today.

[1]  Nial R. Tanvir,et al.  The Hubble Space Telescope and the high redshift universe , 1997 .

[2]  L. Moustakas,et al.  Keck Spectroscopy of Objects with Lens-like Morphologies in the Hubble Deep Field , 1996, astro-ph/9606153.

[3]  T. Heckman,et al.  The Nature of Starburst Galaxies , 1996 .

[4]  M. Malkan,et al.  A Young Cluster of Galaxies at z = 2.5 , 1996 .

[5]  D. Hogg,et al.  Redshift Clustering in the Hubble Deep Field , 1996, astro-ph/9608121.

[6]  ROBERT E. Williams,et al.  The Hubble Deep Field: Observations, Data Reduction, and , 1996, astro-ph/9607174.

[7]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[8]  A. Yahil,et al.  Star-forming galaxies at very high redshifts , 1996, Nature.

[9]  I. Smail,et al.  A gravitationally lensed z = 2.515 star-forming galaxy. , 1996 .

[10]  S. Djorgovski,et al.  Identification of a galaxy responsible for a high-redshift Lyman-α absorption system , 1996, Nature.

[11]  M. Dickinson,et al.  Spectroscopy of Lyman Break Galaxies in the Hubble Deep Field , 1996, astro-ph/9604140.

[12]  B. Mobasher,et al.  The nature of the faint galaxies in the Hubble Deep Field , 1996, astro-ph/9604118.

[13]  M. Fukugita,et al.  Constraints on the Cosmic Structure Formation Models from Early Formation of Giant Galaxies , 1996, astro-ph/9604034.

[14]  On the Nature of the Faint Compact Narrow Emission-Line Galaxies: The Half-Light Radius-Velocity Width Diagram , 1996 .

[15]  M. Giavalisco,et al.  Hubble space telescope imaging of star-forming galaxies at redshifts Z>3 , 1996, astro-ph/9603062.

[16]  R. Carlberg,et al.  A Proto-Galaxy Candidate at Z = 2.7 , 1996, astro-ph/9602121.

[17]  C. Leitherer,et al.  Hubble Space Telescope Ultraviolet Spectroscopy of NGC 1741: A Nearby Template for Distant Energetic Starbursts , 1996, astro-ph/9602084.

[18]  S. Shectman,et al.  The Luminosity Function of Galaxies in the Las Campanas Redshift Survey , 1996, astro-ph/9602064.

[19]  M. Giavalisco,et al.  Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts z > 3 , 1996, astro-ph/9602024.

[20]  O. Fèvre,et al.  The Canada-France Redshift Survey: The Luminosity Density and Star Formation History of the Universe to z ~ 1 , 1996, astro-ph/9601050.

[21]  A. Aragón-Salamanca,et al.  The Current Star Formation Rate of the Local Universe , 1995, astro-ph/9510061.

[22]  C. Hogan,et al.  Imaging and Spectroscopy of Damped LY alpha Quasi-stellar Object Absorption-Line Clouds , 1995 .

[23]  S. Djorgovski,et al.  Serendipitous Long-Slit Surveys for Primeval Galaxies , 1995 .

[24]  A. Szalay,et al.  Slicing Through Multicolor Space: Galaxy Redshifts from Broadband Photometry , 1995, astro-ph/9508100.

[25]  M. Malkan,et al.  An Emission-Line Protogalaxy Candidate at z = 2.5 , 1995 .

[26]  L. Cowie,et al.  Faintest galaxy morphologies from hst wfpc2 imaging of the hawaii survey fields , 1995, astro-ph/9507055.

[27]  C. Leitherer,et al.  Atlas of Synthetic Ultraviolet Spectra of Massive Star Populations , 1995 .

[28]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[29]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[30]  M. Bershady,et al.  High-resolution spectra of distant compact narrow emission line galaxies: Progrenitors of spheroidal galaxies , 1995 .

[31]  R. Kudritzki,et al.  THE PHYSICS OF MASSIVE OB STARS IN DIFFERENT PARENT GALAXIES. I. ULTRAVIOLET AND OPTICAL SPECTRAL MORPHOLOGY IN THE MAGELLANIC CLOUDS , 1995 .

[32]  C. Gronwall,et al.  Resurrection of traditional luminosity evolution models to explain faint fields galaxies , 1994, astro-ph/9411062.

[33]  S. White,et al.  The Assembly of galaxies in a hierarchically clustering universe , 1994, astro-ph/9408067.

[34]  S. White,et al.  Simulations of X-ray clusters , 1994, astro-ph/9408069.

[35]  G. Meylan QSO Absorption Lines , 1995 .

[36]  J. Huchra,et al.  The Luminosity function for different morphological types in the CfA redshift survey , 1994 .

[37]  M. Bershady,et al.  HST images of very compact blue galaxies at z approximately 0.2 , 1994 .

[38]  C. Frenk,et al.  A recipe for galaxy formation , 1994, astro-ph/9402001.

[39]  S. M. Fall,et al.  Lyman-Alpha Emission from Galaxies , 1993 .

[40]  G. Kauffmann,et al.  The formation and evolution of galaxies within merging dark matter haloes , 1993 .

[41]  R. Webster,et al.  On the nature of Mg-Ii absorption-line systems in quasars , 1993 .

[42]  S. D. M. White,et al.  The merging history of dark matter haloes in a hierarchical universe , 1993 .

[43]  S. Charlot,et al.  Spectral evolution of stellar populations using isochrone synthesis , 1993 .

[44]  R. Bender,et al.  Dynamically hot galaxies. I - Structural properties , 1992 .

[45]  R. Ellis,et al.  Precision photometry of early-type galaxies in the Coma and Virgo clusters: a test of the universality of the colour–magnitude relation – II. Analysis , 1992 .

[46]  M. Dopita,et al.  NGC 1705. I. Stellar populations and mass loss via a galactic wind , 1992 .

[47]  R. Ellis,et al.  Faint galaxies: evolution and cosmological curvature , 1992, Nature.

[48]  M. Rowan-Robinson,et al.  A high-redshift IRAS galaxy with huge luminosity—hidden quasar or protogalaxy? , 1991, Nature.

[49]  J. Gorkom,et al.  VLA neutral hydrogen imaging of compact groups of galaxies. II - HCG 31, 44, and 79 , 1991 .

[50]  D. Neufeld The Escape of Lyman-Alpha Radiation from a Multiphase Interstellar Medium , 1991 .

[51]  J. Gardner,et al.  A Deep Imaging and Spectroscopic Survey of Faint Galaxies , 1991 .

[52]  John N. Bahcall,et al.  The Decade of Discovery , 1991 .

[53]  C. Hogan,et al.  Spectroscopic limits on high-redshift Ly-alpha emission , 1990 .

[54]  D. York,et al.  Interstellar absorption lines in the galaxy NGC 1705 , 1990 .

[55]  Michael S. Bessell,et al.  Abundances of the heavy elements in the Magellanic Clouds. I. Metal abundances of F-type supergiants , 1989 .

[56]  D. C. Koo,et al.  Optical multicolors - A poor person's z machine for galaxies , 1985 .

[57]  Joel R. Primack,et al.  Formation of galaxies and large-scale structure with cold dark matter , 1984, Nature.

[58]  R. Kennicutt The Rate of star formation in normal disk galaxies , 1983 .

[59]  Rene Racine,et al.  Globular Clusters in Galaxies , 1979 .

[60]  R. Zinn,et al.  Compositions of halo clusters and the formation of the galactic halo , 1978 .

[61]  L. Auer Transfer of Lyman Alpha in Diffuse Nebulae , 1968 .