Using Dynamic Copulae for Modeling Dependency in Currency Denominations of a Diversified World Stock Index

The aim of this paper is to model the dependency among log-returns when security account prices are expressed in units of a well diversified world stock index. The dependency in log-returns of currency denominations of the index is modeled using time-varying copulae, aiming to identify the best fitting copula family. The Student-t copula turns generally out to be superior to e.g. the Gaussian copula, where the dependence structure relates to the multivariate normal distribution. It is shown that merely changing the distributional assumption for the log-returns of the marginals from normal to Student-t leads to a significantly better fit. The Student-t copula with Student-t marginals is able to better capture dependent extreme values than the other models considered. Furthermore, the paper applies copulae to the estimation of the Value-at-Risk and the expected shortfall of a portfolio constructed of savings accounts of different currencies. The proposed copula-based approach allows to split market risk into general and specific market risk, as defined in regulatory documents. The paper demonstrates that the approach performs clearly better than the RiskMetrics approach, a widely used methodology for Value-at-Risk estimation.

[1]  Canela Miguel-Angel,et al.  Modelling Dependence in Latin American Markets Using Copula Functions , 2012 .

[2]  Modeling exchange rate dependence at different time horizons , 2010 .

[3]  Eckhard Platen,et al.  Empirical Evidence on Student-t Log-Returns of Diversified World Stock Indices , 2007 .

[4]  Xiaohong Chen,et al.  Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification , 2006 .

[5]  D. Heath,et al.  A Benchmark Approach to Quantitative Finance , 2006 .

[6]  Xiaohong Chen,et al.  Efficient Estimation of Semiparametric Multivariate Copula Models Efficient Estimation of Semiparametric Multivariate Copula Models * , 2004 .

[7]  E. Platen,et al.  Approximating the Growth Optimal Portfolio with a Diversified World Stock Index , 2006 .

[8]  Ling Hu Dependence patterns across financial markets: a mixed copula approach , 2006 .

[9]  Andrew J. Patton Modelling Asymmetric Exchange Rate Dependence , 2006 .

[10]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[11]  Florence Wu Simulating Exchangeable Multivariate Archimedean Copulas and its Applications ∗ , 2005 .

[12]  Xiaohong Chen,et al.  Estimation of Copula-Based Semiparametric Time Series Models , 2006 .

[13]  Terry J. Lyons,et al.  Stochastic finance. an introduction in discrete time , 2004 .

[14]  E. Platen Diversified Portfolios with Jumps in a Benchmark Framework , 2004 .

[15]  Alexandra da Costa Dias Copula inference for finance and insurance , 2004 .

[16]  Paul Embrechts,et al.  Dynamic copula models for multivariate high-frequency data in finance , 2004 .

[17]  Eckhard Platen,et al.  A Structure for General and Specific Market Risk , 2003, Comput. Stat..

[18]  Markus Junker,et al.  Elliptical copulas: applicability and limitations , 2003 .

[19]  Wolfgang Breymann,et al.  Dependence structures for multivariate high-frequency data in finance , 2003 .

[20]  A. McNeil,et al.  KENDALL'S TAU FOR ELLIPTICAL DISTRIBUTIONS ∗ , 2003 .

[21]  F. Lindskog,et al.  Multivariate extremes, aggregation and dependence in elliptical distributions , 2002, Advances in Applied Probability.

[22]  S. Kotz,et al.  The Meta-elliptical Distributions with Given Marginals , 2002 .

[23]  Zhi-Xian Gao,et al.  Flow Injection Determination of Nitrite in Food Samples by Dialysis Membrane Separation and Photometric Detection , 2002 .

[24]  P. Embrechts,et al.  Correlation and Dependency in Risk Management , 2002 .

[25]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[26]  Andrew Ang,et al.  Asymmetric Correlations of Equity Portfolios , 2001 .

[27]  S. Rachev,et al.  Stable Paretian Models in Finance , 2000 .

[28]  Svetlozar Rachev,et al.  Portfolio management with stable distributions , 2000, Math. Methods Oper. Res..

[29]  F. Longin,et al.  Extreme Correlation of International Equity Markets , 2000 .

[30]  K. S. Tan,et al.  AGGREGATION OF CORRELATED RISK PORTFOLIOS: MODELS AND ALGORITHMS , 1999 .

[31]  R. Nelsen An Introduction to Copulas , 1998 .

[32]  H. Joe Multivariate models and dependence concepts , 1998 .

[33]  M. Hall The amendment to the capital accord to incorporate market risk , 1996 .

[34]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[35]  Harry Joe,et al.  Parametric families of multivariate distributions with given margins , 1993 .

[36]  C. Small,et al.  The theory and applications of statistical inference functions , 1988 .

[37]  H. Akaike A new look at the statistical model identification , 1974 .

[38]  John L. Kelly,et al.  A new interpretation of information rate , 1956, IRE Trans. Inf. Theory.