Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation

The paper discusses the issue of discretization of the strain–configuration relationships in the geometrically exact theory of three–dimensional (3D) beams, which has been at the heart of most recent nonlinear finite–element formulations. It is demonstrated that the usual discretization procedures for implementing these strain measures within a finite–element framework violate the important property of objectivity: invariance to rigid body rotations. A method is proposed for overcoming this limitation, which paves the way for an objective finite–element formulation of the geometrically exact 3D beam theory. For a two–noded element, this method involves obtaining the relative rotation matrix that rotates one nodal triad onto the other and then interpolating the resulting rotation vector.

[1]  M. Crisfield A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements , 1990 .

[2]  G. Kirchhoff,et al.  Ueber das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. , 1859 .

[3]  A. Ibrahimbegovic Stress resultant geometrically nonlinear shell theory with drilling rotations - Part I : A consistent formulation , 1994 .

[4]  E. Reissner On finite deformations of space-curved beams , 1981 .

[5]  Gordan Jelenić,et al.  INTERPOLATION OF ROTATIONAL VARIABLES IN NONLINEAR DYNAMICS OF 3D BEAMS , 1998 .

[6]  K. Bathe,et al.  Large displacement analysis of three‐dimensional beam structures , 1979 .

[7]  Gordan Jelenić,et al.  Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics , 1999 .

[8]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[9]  Stuart S. Antman,et al.  Kirchhoff’s problem for nonlinearly elastic rods , 1974 .

[10]  E. Dvorkin,et al.  On a non‐linear formulation for curved Timoshenko beam elements considering large displacement/rotation increments , 1988 .

[11]  M. A. Crisfield,et al.  Non-Linear Finite Element Analysis of Solids and Structures: Advanced Topics , 1997 .

[12]  W. G. Bickley Mathematical Theory Of Elasticity , 1946, Nature.

[13]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[14]  I. S. Sokolnikoff Mathematical theory of elasticity , 1946 .

[15]  Joan Lasenby,et al.  Simo-Vu Quoc rods using Clifford algebra , 1999 .

[16]  J. C. Simo,et al.  Non-linear dynamics of three-dimensional rods: Exact energy and momentum conserving algorithms , 1995 .

[17]  J. C. Simo,et al.  On the dynamics of finite-strain rods undergoing large motions a geometrically exact approach , 1988 .

[18]  Leonhard Euler Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici latissimo sensu accepti , 2013, 1307.7187.

[19]  Gordan Jelenić,et al.  A kinematically exact space finite strain beam model - finite element formulation by generalized virtual work principle , 1995 .

[20]  J. C. Simo,et al.  A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .

[21]  J. Argyris An excursion into large rotations , 1982 .

[22]  A. Ibrahimbegovic,et al.  Computational aspects of vector-like parametrization of three-dimensional finite rotations , 1995 .

[23]  E. Reissner On one-dimensional finite-strain beam theory: The plane problem , 1972 .

[24]  A. Love,et al.  The Mathematical Theory of Elasticity. , 1928 .

[25]  A. Ibrahimbegovic,et al.  Stress resultant geometrically nonlinear shell theory with drilling rotations—Part II. Computational aspects , 1994 .

[26]  J. C. Simo,et al.  A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .

[27]  M. Géradin,et al.  A beam finite element non‐linear theory with finite rotations , 1988 .

[28]  E. Reissner,et al.  On One‐Dimensional Large‐Displacement Finite‐Strain Beam Theory , 1973 .

[29]  P. G. Ciarlet,et al.  Theory of plates , 1997 .

[30]  R. A. Spurrier Comment on " Singularity-Free Extraction of a Quaternion from a Direction-Cosine Matrix" , 1978 .

[31]  Alan R. Champneys,et al.  From helix to localized writhing in the torsional post-buckling of elastic rods , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.