Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation
暂无分享,去创建一个
[1] M. Crisfield. A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements , 1990 .
[2] G. Kirchhoff,et al. Ueber das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. , 1859 .
[3] A. Ibrahimbegovic. Stress resultant geometrically nonlinear shell theory with drilling rotations - Part I : A consistent formulation , 1994 .
[4] E. Reissner. On finite deformations of space-curved beams , 1981 .
[5] Gordan Jelenić,et al. INTERPOLATION OF ROTATIONAL VARIABLES IN NONLINEAR DYNAMICS OF 3D BEAMS , 1998 .
[6] K. Bathe,et al. Large displacement analysis of three‐dimensional beam structures , 1979 .
[7] Gordan Jelenić,et al. Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics , 1999 .
[8] Cv Clemens Verhoosel,et al. Non-Linear Finite Element Analysis of Solids and Structures , 1991 .
[9] Stuart S. Antman,et al. Kirchhoff’s problem for nonlinearly elastic rods , 1974 .
[10] E. Dvorkin,et al. On a non‐linear formulation for curved Timoshenko beam elements considering large displacement/rotation increments , 1988 .
[11] M. A. Crisfield,et al. Non-Linear Finite Element Analysis of Solids and Structures: Advanced Topics , 1997 .
[12] W. G. Bickley. Mathematical Theory Of Elasticity , 1946, Nature.
[13] T. R. Hughes,et al. Mathematical foundations of elasticity , 1982 .
[14] I. S. Sokolnikoff. Mathematical theory of elasticity , 1946 .
[15] Joan Lasenby,et al. Simo-Vu Quoc rods using Clifford algebra , 1999 .
[16] J. C. Simo,et al. Non-linear dynamics of three-dimensional rods: Exact energy and momentum conserving algorithms , 1995 .
[17] J. C. Simo,et al. On the dynamics of finite-strain rods undergoing large motions a geometrically exact approach , 1988 .
[18] Leonhard Euler. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici latissimo sensu accepti , 2013, 1307.7187.
[19] Gordan Jelenić,et al. A kinematically exact space finite strain beam model - finite element formulation by generalized virtual work principle , 1995 .
[20] J. C. Simo,et al. A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .
[21] J. Argyris. An excursion into large rotations , 1982 .
[22] A. Ibrahimbegovic,et al. Computational aspects of vector-like parametrization of three-dimensional finite rotations , 1995 .
[23] E. Reissner. On one-dimensional finite-strain beam theory: The plane problem , 1972 .
[24] A. Love,et al. The Mathematical Theory of Elasticity. , 1928 .
[25] A. Ibrahimbegovic,et al. Stress resultant geometrically nonlinear shell theory with drilling rotations—Part II. Computational aspects , 1994 .
[26] J. C. Simo,et al. A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .
[27] M. Géradin,et al. A beam finite element non‐linear theory with finite rotations , 1988 .
[28] E. Reissner,et al. On One‐Dimensional Large‐Displacement Finite‐Strain Beam Theory , 1973 .
[29] P. G. Ciarlet,et al. Theory of plates , 1997 .
[30] R. A. Spurrier. Comment on " Singularity-Free Extraction of a Quaternion from a Direction-Cosine Matrix" , 1978 .
[31] Alan R. Champneys,et al. From helix to localized writhing in the torsional post-buckling of elastic rods , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.