Modeling operon dynamics: the tryptophan and lactose operons as paradigms.

Understanding the regulation of gene control networks and their ensuing dynamics will be a critical component in the understanding of the mountain of genomic data being currently collected. This paper reviews recent mathematical modeling work on the tryptophan and lactose operons which are, respectively, the classical paradigms for repressible and inducible operons.

[1]  John J. Tyson,et al.  The Dynamics of Feedback Control Circuits in Biochemical Pathways , 1978 .

[2]  J. Keasling,et al.  Mathematical Model of the lac Operon: Inducer Exclusion, Catabolite Repression, and Diauxic Growth on Glucose and Lactose , 1997, Biotechnology progress.

[3]  T. Kepler,et al.  Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. , 2001, Biophysical journal.

[4]  Robert Olby,et al.  The path to the double helix , 1974 .

[5]  M. Cohn,et al.  INHIBITION BY GLUCOSE OF THE INDUCED SYNTHESIS OF THE β-GALACTOSIDE-ENZYME SYSTEM OF ESCHERICHIA COLI. ANALYSIS OF MAINTENANCE , 1959, Journal of bacteriology.

[6]  W. Reznikoff,et al.  The lactose operon‐controlling elements: a complex paradigm , 1992, Molecular microbiology.

[7]  E. Schrödinger,et al.  What is life? : the physical aspect of the living cell , 1946 .

[8]  M. Mackey,et al.  Dynamics and bistability in a reduced model of the lac operon. , 2004, Chaos.

[9]  S. Roseman,et al.  Sugar transport. 2nducer exclusion and regulation of the melibiose, maltose, glycerol, and lactose transport systems by the phosphoenolpyruvate:sugar phosphotransferase system. , 1976, The Journal of biological chemistry.

[10]  B. Goodwin Control dynamics of beta-galactosidase in relation to the bacterial cell cycle. , 1969, European journal of biochemistry.

[11]  P. Jirounek,et al.  The potential distribution and the short-circuiting factor in the sucrose gap. , 1971, Biophysical journal.

[12]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[13]  J. F. Selgrade A Hopf bifurcation in single-loop positive-feedback systems , 1982 .

[14]  B. Goodwin Oscillatory behavior in enzymatic control processes. , 1965, Advances in enzyme regulation.

[15]  J. Mahaffy,et al.  Stability analysis for a mathematical model of the lac operon , 1999 .

[16]  A. K. Sen,et al.  Dynamic analysis of genetic control and regulation of amino acid synthesis: The tryptophan operon in Escherichia coli , 1990, Biotechnology and bioengineering.

[17]  M. Saier,et al.  Regulation of lactose permease activity by the phosphoenolpyruvate:sugar phosphotransferase system: evidence for direct binding of the glucose-specific enzyme III to the lactose permease. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[18]  James F. Selgrade,et al.  Mathematical Analysis of a Cellular Control Process with Positive Feedback , 1979 .

[19]  M. Mackey,et al.  Feedback regulation in the lactose operon: a mathematical modeling study and comparison with experimental data. , 2003, Biophysical journal.

[20]  F. Jacob,et al.  L'opéron : groupe de gènes à expression coordonnée par un opérateur [C. R. Acad. Sci. Paris 250 (1960) 1727–1729] , 2005 .

[21]  H. McAdams,et al.  Circuit simulation of genetic networks. , 1995, Science.

[22]  A. Novick,et al.  ENZYME INDUCTION AS AN ALL-OR-NONE PHENOMENON. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[23]  W A Knorre,et al.  Oscillations of the rate of synthesis of beta-galactosidase in Escherichia coli ML 30 and ML 308. , 1968, Biochemical and biophysical research communications.

[24]  M. Cohn,et al.  ANALYSIS OF THE DIFFERENTIATION AND OF THE HETEROGENEITY WITHIN A POPULATION OF ESCHERICHIA COLI UNDERGOING INDUCED β-GALACTOSIDASE SYNTHESIS , 1959, Journal of bacteriology.

[25]  A. Arkin,et al.  Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. , 1998, Genetics.

[26]  C. Yanofsky,et al.  Role of regulatory features of the trp operon of Escherichia coli in mediating a response to a nutritional shift , 1994, Journal of bacteriology.

[27]  R. D. Bliss A specific method for determination of free tryptophan and endogenous tryptophan in Escherichia coli. , 1979, Analytical biochemistry.

[28]  S. Sinha Theoretical study of tryptophan operon: Application in microbial technology , 1988, Biotechnology and bioengineering.

[29]  S Pestka,et al.  Anti-mRNA: specific inhibition of translation of single mRNA molecules. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[30]  D. Zipser,et al.  The lactose operon , 1970 .

[31]  Jiang Jifa A Liapunov function for four-dimensional positive feedback systems , 1994 .

[32]  A. Zeng,et al.  Model analysis concerning the effects of growth rate and intracellular tryptophan level on the stability and dynamics of tryptophan biosynthesis in bacteria , 1997 .

[33]  F. Neidhardt,et al.  Phosphoenolpyruvate:carbohydrate phosphotransferase systems , 1996 .

[34]  R. D. Bliss,et al.  Role of feedback inhibition in stabilizing the classical operon. , 1982, Journal of theoretical biology.

[35]  J. Griffith Mathematics of cellular control processes. II. Positive feedback to one gene. , 1968, Journal of theoretical biology.

[36]  Michael C. Mackey,et al.  Molecular, metabolic, and genetic control: An introduction. , 2001, Chaos.

[37]  M C Mackey,et al.  Dynamic regulation of the tryptophan operon: a modeling study and comparison with experimental data. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[38]  J. Griffith,et al.  Mathematics of cellular control processes. I. Negative feedback to one gene. , 1968, Journal of theoretical biology.

[39]  L. Shampine,et al.  Solving DDEs in MATLAB , 2001 .

[40]  G. Yagil,et al.  On the relation between effector concentration and the rate of induced enzyme synthesis. , 1971, Biophysical journal.