The influence of respiration on brainstem and cardiovagal response to auricular vagus nerve stimulation: A multimodal ultrahigh-field (7T) fMRI study

[1]  J. D. Boyd,et al.  Cytoarchitecture of the Human Brain Stem , 1955 .

[2]  J. Hobson,et al.  Sleep cycle control and cholinergic mechanisms: Differential effects of carbachol injections at pontine brain stem sites , 1975, Brain Research.

[3]  H. Burton,et al.  Nuclei of the solitary tract: Efferent projections to the lower brain stem and spinal cord of the cat , 1978, The Journal of comparative neurology.

[4]  R. Norgren Projections from the nucleus of the solitary tract in the rat , 1978, Neuroscience.

[5]  C. Saper,et al.  Efferent connections of the parabrachial nucleus in the rat , 1980, Brain Research.

[6]  F. Bloom,et al.  Nonrepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  K. M. Spyer,et al.  Neural organisation and control of the baroreceptor reflex. , 1981, Reviews of physiology, biochemistry and pharmacology.

[8]  M. Balda,et al.  Neurogenic hypertension after depletion of norepinephrine in anterior hypothalamus induced by 6-hydroxydopamine administration into the ventral pons: Role of serotonin , 1983, Neuropharmacology.

[9]  D. Jordan,et al.  Synaptic mechanisms involved in the inspiratory modulation of vagal cardio‐inhibitory neurones in the cat. , 1984, The Journal of physiology.

[10]  N. Mizuno,et al.  Central distribution of primary afferent fibers in the Arnold's nerve (the auricular branch of the vagus nerve): A transganglionic HRP study in the cat , 1984, Brain Research.

[11]  S. Robinson,et al.  The role of serotonergic neurons in dorsal raphe, median raphe and anterior hypothalamic pressor mechanisms , 1985, Neuropharmacology.

[12]  Yaomin Hu,et al.  The central projections of the great auricular nerve primary afferent fibers — an HRP transganglionic tracing method , 1988, Brain Research.

[13]  B. Jacobs,et al.  Structure and function of the brain serotonin system. , 1992, Physiological reviews.

[14]  T. Petrov,et al.  The hypothalamic paraventricular and lateral parabrachial nuclei receive collaterals from raphe nucleus neurons: A combined double retrograde and immunocytochemical study , 1992, The Journal of comparative neurology.

[15]  E. Ben-Menachem,et al.  Vagus Nerve Stimulation for Treatment of Partial Seizures: 1. A Controlled Study of Effect on Seizures , 1994, Epilepsia.

[16]  Qing-ping Wang,et al.  The dorsal raphe: An important nucleus in pain modulation , 1994, Brain Research Bulletin.

[17]  G. Breithardt,et al.  Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. , 1996 .

[18]  M. D’Esposito,et al.  Empirical Analyses of BOLD fMRI Statistics , 1997, NeuroImage.

[19]  M. Piepoli,et al.  Origin of respiratory sinus arrhythmia in conscious humans. An important role for arterial carotid baroreceptors. , 1997, Circulation.

[20]  M. Miyazaki,et al.  Activity of rat pump neurons is modulated with central respiratory rhythm , 1998, Neuroscience Letters.

[21]  B. Uthman,et al.  Vagus nerve stimulation therapy for partial-onset seizures , 1998, Neurology.

[22]  Makoto Miyazaki,et al.  Excitatory and inhibitory synaptic inputs shape the discharge pattern of pump neurons of the nucleus tractus solitarii in the rat , 1999, Experimental Brain Research.

[23]  E. V. Van Bockstaele,et al.  Efferent projections of the nucleus of the solitary tract to peri‐locus coeruleus dendrites in rat brain: Evidence for a monosynaptic pathway , 1999, The Journal of comparative neurology.

[24]  A. A. Bell,et al.  Cardiovascular responses produced by microinjection of serotonin-receptor agonists into the paraventricular nucleus in conscious rats. , 1999, Journal of cardiovascular pharmacology.

[25]  E. G. Ventureyra,et al.  Transcutaneous vagus nerve stimulation for partial onset seizure therapy , 2000, Child's Nervous System.

[26]  Cole A. Giller,et al.  Vagus Nerve Stimulation (VNS™) for Treatment-Resistant Depression: Efficacy, Side Effects, and Predictors of Outcome , 2001, Neuropsychopharmacology.

[27]  P. Guyenet,et al.  Baro-activated neurons with pulse-modulated activity in the rat caudal ventrolateral medulla express GAD67 mRNA. , 2003, Journal of neurophysiology.

[28]  D. Mendelowitz,et al.  Respiratory Sinus Arrhythmia: Endogenous Activation of Nicotinic Receptors Mediates Respiratory Modulation of Brainstem Cardioinhibitory Parasympathetic Neurons , 2003, Circulation research.

[29]  E. Gordon,et al.  Synchronous Gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia , 2003, Brain Research Reviews.

[30]  Peter A. Bandettini,et al.  Experimental designs and processing strategies for fMRI studies involving overt verbal responses , 2004, NeuroImage.

[31]  V. D. Calhoun,et al.  fMRI analysis with the general linear model: removal of latency-induced amplitude bias by incorporation of hemodynamic derivative terms , 2004, NeuroImage.

[32]  John A Detre,et al.  Perfusion fMRI for functional neuroimaging. , 2005, International review of neurobiology.

[33]  Jonathan D. Cohen,et al.  Adaptive gain and the role of the locus coeruleus–norepinephrine system in optimal performance , 2005, The Journal of comparative neurology.

[34]  E. Brown,et al.  A point-process model of human heartbeat intervals: new definitions of heart rate and heart rate variability. , 2005, American journal of physiology. Heart and circulatory physiology.

[35]  Alan Frazer,et al.  VNS Therapy in Treatment-Resistant Depression: Clinical Evidence and Putative Neurobiological Mechanisms , 2006, Neuropsychopharmacology.

[36]  David N. Kennedy,et al.  Automated Brainstem Co-registration (ABC) for MRI , 2006, NeuroImage.

[37]  J. Kornhuber,et al.  BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation , 2007, Journal of Neural Transmission.

[38]  E. Esposito,et al.  Serotonin modulation of the basal ganglia circuitry: therapeutic implication for Parkinson's disease and other motor disorders. , 2008, Progress in brain research.

[39]  S. Dietrich,et al.  A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI / Funktionelle Magnetresonanztomographie zeigt Aktivierungen des Hirnstamms und weiterer zerebraler Strukturen unter transkutaner Vagusnervstimulation , 2008, Biomedizinische Technik. Biomedical engineering.

[40]  Emery N. Brown,et al.  Brain correlates of autonomic modulation: Combining heart rate variability with fMRI , 2008, NeuroImage.

[41]  S. Kollias,et al.  Duvernoy's Atlas of the Human Brain Stem and Cerebellum , 2009 .

[42]  V. Macefield,et al.  Differential activation of the human trigeminal nuclear complex by noxious and non‐noxious orofacial stimulation , 2009, Human brain mapping.

[43]  S. Sara The locus coeruleus and noradrenergic modulation of cognition , 2009, Nature Reviews Neuroscience.

[44]  Paul S. Morgan,et al.  In vivo mapping of the human locus coeruleus , 2009, NeuroImage.

[45]  Catie Chang,et al.  Influence of heart rate on the BOLD signal: The cardiac response function , 2009, NeuroImage.

[46]  D. Mendelowitz,et al.  Respiratory modulation of premotor cardiac vagal neurons in the brainstem , 2010, Respiratory Physiology & Neurobiology.

[47]  J. Monti The structure of the dorsal raphe nucleus and its relevance to the regulation of sleep and wakefulness. , 2010, Sleep medicine reviews.

[48]  Ilya A. Rybak,et al.  Respiratory Physiology & Neurobiology Effect of Baroreceptor Stimulation on the Respiratory Pattern: Insights into Respiratory–sympathetic Interactions , 2022 .

[49]  V. Macefield,et al.  Bilateral activation of the trigeminothalamic tract by acute orofacial cutaneous and muscle pain in humans , 2010, PAIN®.

[50]  D. Louis Collins,et al.  Unbiased average age-appropriate atlases for pediatric studies , 2011, NeuroImage.

[51]  J. Detre,et al.  Potentials and Challenges for Arterial Spin Labeling in Pharmacological Magnetic Resonance Imaging , 2011, Journal of Pharmacology and Experimental Therapeutics.

[52]  J. Kornhuber,et al.  Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study , 2013, Journal of Neural Transmission.

[53]  V. Napadow,et al.  Evoked pain analgesia in chronic pelvic pain patients using respiratory-gated auricular vagal afferent nerve stimulation. , 2012, Pain medicine.

[54]  Liang Li,et al.  Transcutaneous vagus nerve stimulation for the treatment of depression: a study protocol for a double blinded randomized clinical trial , 2012, BMC Complementary and Alternative Medicine.

[55]  A. Meneses,et al.  Serotonin and emotion, learning and memory , 2012, Reviews in the neurosciences.

[56]  Claus Lamm,et al.  Comparing neural response to painful electrical stimulation with functional MRI at 3 and 7T , 2013, NeuroImage.

[57]  J. Mäkelä,et al.  Transcutaneous vagus nerve stimulation in tinnitus: a pilot study , 2013, Acta oto-laryngologica.

[58]  Olivia K. Faull,et al.  Physiological Noise in Brainstem fMRI , 2013, Front. Hum. Neurosci..

[59]  Johannes Kornhuber,et al.  CNS BOLD fMRI Effects of Sham-Controlled Transcutaneous Electrical Nerve Stimulation in the Left Outer Auditory Canal – A Pilot Study , 2013, Brain Stimulation.

[60]  M. Joyner,et al.  Regulation of blood pressure by the arterial baroreflex and autonomic nervous system. , 2013, Handbook of clinical neurology.

[61]  B. Langguth,et al.  Feasibility, Safety and Efficacy of Transcutaneous Vagus Nerve Stimulation in Chronic Tinnitus: An Open Pilot Study , 2014, Brain Stimulation.

[62]  F. Beissner,et al.  Investigating the Human Brainstem with Structural and Functional MRI , 2014, Front. Hum. Neurosci..

[63]  Minmin Luo,et al.  Dorsal Raphe Neurons Signal Reward through 5-HT and Glutamate , 2014, Neuron.

[64]  R. Laqua,et al.  Transcutaneous vagal nerve stimulation may elicit anti- and pro-nociceptive effects under experimentally-induced pain — A crossover placebo-controlled investigation , 2014, Autonomic Neuroscience.

[65]  G. Silberberg,et al.  A Whole-Brain Atlas of Inputs to Serotonergic Neurons of the Dorsal and Median Raphe Nuclei , 2014, Neuron.

[66]  C. Peck,et al.  Differential brain activity in subjects with painful trigeminal neuropathy and painful temporomandibular disorder , 2014, PAIN®.

[67]  Eduardo Colombari,et al.  The nucleus of the solitary tract and the coordination of respiratory and sympathetic activities , 2014, Front. Physiol..

[68]  T. Maehara,et al.  Origin, course and distribution of the nerves to the posterosuperior wall of the external acoustic meatus , 2014, Anatomical Science International.

[69]  John P. Greenwood,et al.  Non-invasive Vagus Nerve Stimulation in Healthy Humans Reduces Sympathetic Nerve Activity , 2014, Brain Stimulation.

[70]  J. Gee,et al.  The Insight ToolKit image registration framework , 2014, Front. Neuroinform..

[71]  J. Ellrich,et al.  Non-invasive Access to the Vagus Nerve Central Projections via Electrical Stimulation of the External Ear: fMRI Evidence in Humans , 2015, Brain Stimulation.

[72]  Andreas Straube,et al.  Treatment of chronic migraine with transcutaneous stimulation of the auricular branch of the vagal nerve (auricular t-VNS): a randomized, monocentric clinical trial , 2015, The Journal of Headache and Pain.

[73]  Patrick T. Hickey,et al.  Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization , 2015, Human brain mapping.

[74]  Claus Svarer,et al.  Functional connectivity of the dorsal and median raphe nuclei at rest , 2015, NeuroImage.

[75]  Paul M. Matthews,et al.  Relevance of parahippocampal-locus coeruleus connectivity to memory in early dementia , 2015, Neurobiology of Aging.

[76]  R. Laqua,et al.  Preliminary findings of cerebral responses on transcutaneous vagal nerve stimulation on experimental heat pain , 2017, Brain Imaging and Behavior.

[77]  S. Silberstein,et al.  Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part III , 2016, Headache.

[78]  Thorsten Feiweier,et al.  Reducing sensitivity losses due to respiration and motion in accelerated echo planar imaging by reordering the autocalibration data acquisition , 2016, Magnetic resonance in medicine.

[79]  Florian Beissner,et al.  MICA—A toolbox for masked independent component analysis of fMRI data , 2016, Human brain mapping.

[80]  Mark Jenkinson,et al.  Conditioned respiratory threat in the subdivisions of the human periaqueductal gray , 2016, eLife.

[81]  Sergio Cerutti,et al.  Brain Circuitry Supporting Multi-Organ Autonomic Outflow in Response to Nausea. , 2014, Cerebral cortex.

[82]  Sergio Cerutti,et al.  Neuroimaging brainstem circuitry supporting cardiovagal response to pain: a combined heart rate variability/ultrahigh-field (7 T) functional magnetic resonance imaging study , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[83]  E. Nam,et al.  Optimization of Transcutaneous Vagus Nerve Stimulation Using Functional MRI , 2017, Neuromodulation : journal of the International Neuromodulation Society.

[84]  Jeann L. Sabino-Carvalho,et al.  Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: A randomized placebo-controlled trial , 2017, Brain Stimulation.

[85]  Eleni Frangos,et al.  Access to Vagal Projections via Cutaneous Electrical Stimulation of the Neck: fMRI Evidence in Healthy Humans , 2017, Brain Stimulation.

[86]  Jeungchan Lee,et al.  Modulation of brainstem activity and connectivity by respiratory-gated auricular vagal afferent nerve stimulation in migraine patients , 2017, Pain.

[87]  A. Mäkitie,et al.  Non-invasive vagus nerve stimulation reduces sympathetic preponderance in patients with tinnitus , 2017, Acta oto-laryngologica.

[88]  C. Rangon Reconsidering Sham in Transcutaneous Vagus Nerve Stimulation studies , 2018, Clinical Neurophysiology.

[89]  Bruce R. Rosen,et al.  Stimulus-dependent hemodynamic response timing across the human subcortical-cortical visual pathway identified through high spatiotemporal resolution 7T fMRI , 2018, NeuroImage.

[90]  Jonathan R. Polimeni,et al.  Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI , 2017, NeuroImage.

[91]  T. Zaehle,et al.  Reply to “Reconsidering Sham in Transcutaneous Vagus Nerve Stimulation studies” , 2018, Clinical Neurophysiology.

[92]  Mark S. George,et al.  Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate , 2018, Brain Stimulation.

[93]  Maged Goubran,et al.  Revealing sub‐voxel motions of brain tissue using phase‐based amplified MRI (aMRI) , 2018, Magnetic resonance in medicine.

[94]  T. Usichenko,et al.  Effects of Electrical Transcutaneous Vagus Nerve Stimulation on the Perceived Intensity of Repetitive Painful Heat Stimuli: A Blinded Placebo- and Sham-Controlled Randomized Crossover Investigation , 2018, Anesthesia and analgesia.

[95]  Logan T Dowdle,et al.  Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: A concurrent taVNS/fMRI study and review , 2017, Brain Stimulation.