Structure and catalytic mechanism of secretory phospholipases A2.

[1]  O. Berg,et al.  Inhibition of phospholipase A2 , 1994, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[2]  B. Honig,et al.  The electrostatic basis for the interfacial binding of secretory phospholipases A2. , 1994, Biophysical journal.

[3]  J. J. Rosa,et al.  Structures of free and inhibited human secretory phospholipase A2 from inflammatory exudate. , 1993, Science.

[4]  M. Gelb,et al.  High-level expression in Escherichia coli and rapid purification of enzymatically active honey bee venom phospholipase A2. , 1992, Biochimica et biophysica acta.

[5]  B. Ramakrishnan,et al.  Crystal structure of the Y52F/Y73F double mutant of phospholipase A2: Increased hydrophobic interactions of the phenyl groups compensate for the disrupted hydrogen bonds of the tyrosines , 1992, Protein science : a publication of the Protein Society.

[6]  C. Wharton,et al.  The binding of amide substrate analogues to phospholipase A2. Studies by 13C-nuclear-magnetic-resonance and infrared spectroscopy. , 1992, The Biochemical journal.

[7]  P. Sigler,et al.  Crystallographic and biochemical studies of the (inactive) Lys-49 phospholipase A2 from the venom of Agkistridon piscivorus piscivorus. , 1992, The Journal of biological chemistry.

[8]  K. H. Kalk,et al.  Site-directed mutagenesis and X-ray crystallography of two phospholipase A2 mutants: Y52F and Y73F. , 1992, Protein engineering.

[9]  U. Uhlin,et al.  The three‐dimensional structure of notexin, a presynaptic neurotoxic phospholipase A2 at 2.0 Å resolution , 1992, FEBS letters.

[10]  A. Ortiz,et al.  Implications of a consensus recognition site for phosphatidylcholine separate from the active site in cobra venom phospholipases A2. , 1992, Biochemistry.

[11]  J. Chafouleas,et al.  The phospholipase A2 of human spermatozoa; purification and partial sequence. , 1992, Biochemical and biophysical research communications.

[12]  E. Dennis,et al.  Renaturation of cobra venom phospholipase A2 expressed from a synthetic gene in Escherichia coli. , 1992, Biochimica et biophysica acta.

[13]  M. James,et al.  Towards an understanding of the effects of calcium on protein structure and function , 1991, Current Biology.

[14]  M. Jain,et al.  Interfacial catalysis by phospholipase A2: monomeric enzyme is fully catalytically active at the bilayer interface. , 1991, Biochemistry.

[15]  O. Berg,et al.  Interfacial catalysis by phospholipase A2: substrate specificity in vesicles. , 1991, Biochemistry.

[16]  O. Berg,et al.  Interfacial catalysis by phospholipase A2: determination of the interfacial kinetic rate constants. , 1991, Biochemistry.

[17]  D. Clawson,et al.  Structure of recombinant human rheumatoid arthritic synovial fluid phospholipase A2 at 2.2 Å resolution , 1991, Nature.

[18]  J. D. Clark,et al.  A novel arachidonic acid-selective cytosolic PLA2 contains a Ca2+-dependent translocation domain with homology to PKC and GAP , 1991, Cell.

[19]  D. Blow Lipases reach the surface , 1991, Nature.

[20]  L. Thim,et al.  A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex , 1991, Nature.

[21]  P. Lawton,et al.  Human extracellular recombinant phospholipase A2 induces an inflammatory response in rabbit joints. , 1991, Journal of immunology.

[22]  H. Arita,et al.  Intracellular localization of group II phospholipase A2 in rat vascular smooth muscle cells and its possible relationship to eicosanoid formation. , 1991, Biochimica et biophysica acta.

[23]  Mahendra K. Jain,et al.  Phospholipase A2 at the bilayer interface , 1991, Proteins.

[24]  J. Manetta,et al.  The Ca2(+)-sensitive cytosolic phospholipase A2 is a 100-kDa protein in human monoblast U937 cells. , 1991, The Journal of biological chemistry.

[25]  P. Franken,et al.  The importance of glycine-30 for enzymatic activity of phospholipase A2. , 1991, Biochimica et biophysica acta.

[26]  Reinhard Lipowsky,et al.  The conformation of membranes , 1991, Nature.

[27]  J. Gutiérrez,et al.  Myotoxin II from Bothrops asper (Terciopelo) venom is a lysine-49 phospholipase A2. , 1991, Archives of biochemistry and biophysics.

[28]  R M Venable,et al.  Model for the structure of the lipid bilayer. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[29]  S. Chock,et al.  Linking phospholipase A2 to phospholipid turnover and prostaglandin synthesis in mast cell granules. , 1991, European journal of biochemistry.

[30]  M. Gelb,et al.  Interfacial catalysis: the mechanism of phospholipase A2 , 1990, Science.

[31]  M. Gelb,et al.  Crystal structure of bee-venom phospholipase A2 in a complex with a transition-state analogue , 1990, Science.

[32]  G. H. Haas,et al.  Function of the fully conserved residues Asp99, Tyr52 and Tyr73 in phospholipase A2. , 1990, Protein engineering.

[33]  S. Brunie,et al.  Molecular dynamics simulations of phospholipases A2. , 1990, Protein engineering.

[34]  K. H. Kalk,et al.  X-ray structure of phospholipase A2 complexed with a substrate-derived inhibitor , 1990, Nature.

[35]  J. D. Clark,et al.  Purification of a 110-kilodalton cytosolic phospholipase A2 from the human monocytic cell line U937. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[36]  E. Beckmann,et al.  Direct determination of phospholipid lamellar structure at 0.34-nm resolution. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[37]  R. Burgoyne,et al.  The control of free arachidonic acid levels. , 1990, Trends in biochemical sciences.

[38]  D. F. Kennedy,et al.  A Fourier transform infrared spectroscopic (FTIR) study of porcine and bovine pancreatic phospholipase A2 and their interaction with substrate analogues and a transition-state inhibitor. , 1990, Biochimica et biophysica acta.

[39]  P Gros,et al.  Inclusion of thermal motion in crystallographic structures by restrained molecular dynamics. , 1990, Science.

[40]  J. Noel,et al.  Phospholipase A2 engineering. 4. Can the active-site aspartate-99 function alone? , 1990 .

[41]  L. Chang,et al.  The N-terminal amino group essential for the biological activity of notexin from Notechis scutatus scutatus venom. , 1990, Biochimica et biophysica acta.

[42]  M. Gelb,et al.  Kinetic and inhibition studies of phospholipase A2 with short-chain substrates and inhibitors. , 1990, Biochemistry.

[43]  Steven C. Zimmerman,et al.  Kinetic effect of a syn-oriented carboxylate on a proximate imidazole in catalysis: a model for the histidine-aspartate couple in enzymes , 1990 .

[44]  D J Osguthorpe,et al.  Filtering molecular dynamics trajectories to reveal low-frequency collective motions: phospholipase A2. , 1989, Journal of molecular biology.

[45]  A. Vandermeers,et al.  Purification and characterization of five variants of phospholipase A2 and complete primary structure of the main phospholipase A2 variant in Heloderma suspectum (Gila monster) venom. , 1989, European journal of biochemistry.

[46]  N. Kitamura,et al.  Structure of cDNA coding for rat platelet phospholipase A2. , 1989, Journal of biochemistry.

[47]  K. Ikeda,et al.  Role of Ca2+ in the substrate binding and catalytic functions of snake venom phospholipases A2. , 1989, Journal of biochemistry.

[48]  M. Sippl,et al.  Analysis of the cDNA for phospholipase A2 from honeybee venom glands. The deduced amino acid sequence reveals homology to the corresponding vertebrate enzymes. , 1989, European journal of biochemistry.

[49]  Y. Kawano,et al.  Raman and infrared studies on the conformation of porcine pancreatic and Crotalus durissus terrificus phospholipases A2. , 1989, Biochimica et biophysica acta.

[50]  M. Williamson,et al.  1H-NMR and protection studies of interactions between ligands and bovine pancreatic phospholipase A2. , 1989, Biochimica et biophysica acta.

[51]  J. D. Bell,et al.  The temporal sequence of events in the activation of phospholipase A2 by lipid vesicles. Studies with the monomeric enzyme from Agkistrodon piscivorus piscivorus. , 1989, The Journal of biological chemistry.

[52]  R. Kaptein,et al.  1H NMR studies of bovine and porcine phospholipase A2: assignment of aromatic resonances and evidence for a conformational equilibrium in solution. , 1989, Biochemistry.

[53]  A. Tomasselli,et al.  Dimerization and activation of porcine pancreatic phospholipase A2 via substrate level acylation of lysine 56. , 1989, The Journal of biological chemistry.

[54]  K. Martínek,et al.  Micellar enzymology: its relation to membranology , 1989 .

[55]  M. Jain,et al.  Substrate specificity for interfacial catalysis by phospholipase A2 in the scooting mode. , 1989, Biochimica et biophysica acta.

[56]  J. Drenth,et al.  Enhanced activity and altered specificity of phospholipase A2 by deletion of a surface loop. , 1989, Science.

[57]  R. Kramer,et al.  Structure and properties of a human non-pancreatic phospholipase A2. , 1989, The Journal of biological chemistry.

[58]  W Pruzanski,et al.  Cloning and recombinant expression of phospholipase A2 present in rheumatoid arthritic synovial fluid. , 1989, The Journal of biological chemistry.

[59]  O. Berg,et al.  The kinetics of interfacial catalysis by phospholipase A2 and regulation of interfacial activation: hopping versus scooting. , 1989, Biochimica et biophysica acta.

[60]  H. Verheij,et al.  The role of Asp‐49 and other conserved amino acids in phospholipases A2 and their importance for enzymatic activity , 1989, Journal of cellular biochemistry.

[61]  J. D. Bell,et al.  Thermodynamic and kinetic studies of the interaction of vesicular dipalmitoylphosphatidylcholine with Agkistrodon piscivorus piscivorus phospholipase A2. , 1989, The Journal of biological chemistry.

[62]  M. D. Lister,et al.  Cyclopentanoid analogs of phosphatidylcholine: susceptibility to phospholipase A2. , 1988, Journal of lipid research.

[63]  J. Noel,et al.  Use of short-chain cyclopentano-phosphatidylcholines to probe the mode of activation of phospholipase A2 from bovine pancreas and bee venom. , 1988, The Journal of biological chemistry.

[64]  E. Dennis,et al.  Probing the role of substrate conformation in phospholipase A2 action on aggregated phospholipids using constrained phosphatidylcholine analogues. , 1988, The Journal of biological chemistry.

[65]  I. Johnson,et al.  Rotational dynamics of the single tryptophan of porcine pancreatic phospholipase A2, its zymogen, and an enzyme/micelle complex. A steady-state and time-resolved anisotropy study. , 1988, Biochemistry.

[66]  A. Tomasselli,et al.  The chemical basis for interfacial activation of monomeric phospholipases A2. Autocatalytic derivatization of the enzyme by acyl transfer from substrate. , 1988, The Journal of biological chemistry.

[67]  S. Zimmerman,et al.  Stereoelectronic effects at carboxylate: A syn oriented model for the histidine-aspartate couple in enzymes , 1988 .

[68]  R M Stroud,et al.  The three-dimensional structure of Asn102 mutant of trypsin: role of Asp102 in serine protease catalysis. , 1988, Science.

[69]  M. Jain,et al.  Kinetics of binding of phospholipase A2 to lipid/water interfaces and its relationship to interfacial activation. , 1988, Biochimica et biophysica acta.

[70]  J. Wells,et al.  Dissecting the catalytic triad of a serine protease , 1988, Nature.

[71]  R J Read,et al.  Refined crystal structure of Streptomyces griseus trypsin at 1.7 A resolution. , 1988, Journal of molecular biology.

[72]  M. Gelb,et al.  Phosphonate-containing phospholipid analogues as tight-binding inhibitors of phospholipase-A2 , 1988 .

[73]  A. Schreurs,et al.  Site-specific epsilon-NH2 monoacylation of pancreatic phospholipase A2. 1. Preparation and properties. , 1988, Biochemistry.

[74]  E. Dennis Regulation of Eicosanoid Production: Role of Phospholipases and Inhibitors , 1987, Bio/Technology.

[75]  Mahendra K. Jain,et al.  Dehydration of the lipid-protein microinterface on binding of phospholipase A2 to lipid bilayers. , 1987, Biochimica et biophysica acta.

[76]  H. C. Liu,et al.  Toxicity domain in presynaptically toxic phospholipase A2 of snake venom. , 1987, Biochimica et biophysica acta.

[77]  R. Kini,et al.  Structure-function relationships of phospholipases. The anticoagulant region of phospholipases A2. , 1987, The Journal of biological chemistry.

[78]  W. Rutter,et al.  The catalytic role of the active site aspartic acid in serine proteases. , 1987, Science.

[79]  P. Kinnunen,et al.  Triggering of the activity of phospholipase A2 by an electric field. , 1987, Biochemistry.

[80]  A. J. Slotboom,et al.  Interaction of pancreatic phospholipases A2 and semisynthetic mutants with anionic substrates and substrate analogues. , 1987, Biochemistry.

[81]  O. Kuipers,et al.  Expression of porcine pancreatic phospholipase A2. Generation of active enzyme by sequence-specific cleavage of a hybrid protein from Escherichia coli. , 1987, Nucleic acids research.

[82]  B. Maliwal,et al.  Anchoring of phospholipase A2: the effect of anions and deuterated water, and the role of N-terminus region. , 1986, Biochimica et biophysica acta.

[83]  G. de Haas,et al.  Optically detected magnetic resonance studies of porcine pancreatic phospholipase A2 binding to a negatively charged substrate analogue. , 1986, Biochemistry.

[84]  B. Martin,et al.  Biochemical characterization of the phospholipase A2 purified from the venom of the Mexican beaded lizard (Heloderma horridum horridum Wiegmann). , 1986, Biochemistry.

[85]  P B Sigler,et al.  The refined crystal structure of dimeric phospholipase A2 at 2.5 A. Access to a shielded catalytic center. , 1986 .

[86]  G. de Haas,et al.  Activation of porcine pancreatic phospholipase A2 by the presence of negative charges at the lipid-water interface. , 1986, Biochemistry.

[87]  G. de Haas,et al.  Kinetic behavior of porcine pancreatic phospholipase A2 on zwitterionic and negatively charged double-chain substrates. , 1985, Biochemistry.

[88]  J. Drenth,et al.  A comparison of the crystal structures of phospholipase A2 from bovine pancreas and Crotalus atrox venom. , 1985, The Journal of biological chemistry.

[89]  B. Maliwal,et al.  The environment of tryptophan in pig pancreatic phospholipase A2 bound to bilayers. , 1985, Biochimica et biophysica acta.

[90]  R. Heinrikson,et al.  A new class of phospholipases A2 with lysine in place of aspartate 49. Functional consequences for calcium and substrate binding. , 1984, The Journal of biological chemistry.

[91]  P. Kinnunen,et al.  Evidence for the control of the action of phospholipases A by the physical state of the substrate , 1984 .

[92]  R. Hider,et al.  Classification of phospholipases A2 according to sequence. Evolutionary and pharmacological implications. , 1983, European journal of biochemistry.

[93]  K. H. Kalk,et al.  Role of the N-terminus in the interaction of pancreatic phospholipase A2 with aggregated substrates. Properties and crystal structure of transaminated phospholipase A2. , 1983, Biochemistry.

[94]  W G Hol,et al.  Structure of porcine pancreatic phospholipase A2 at 2.6 A resolution and comparison with bovine phospholipase A2. , 1983, Journal of molecular biology.

[95]  A. J. Slotboom,et al.  Semisynthesis of phospholipase A2. The effect of substitution of amino-acid residues at positions 6 and 7 in bovine and porcine pancreatic phospholipases A2 on catalytic and substrate-binding properties. , 1983, European journal of biochemistry.

[96]  E. Dennis,et al.  Magnetic nonequivalence of the two fatty acid chains in phospholipids of small unilamellar vesicles and mixed micelles. , 1981, Biochemistry.

[97]  W. Hol,et al.  THE STRUCTURE OF BOVINE PANCREATIC PROPHOSPHOLIPASE A2 AT 3.0 A RESOLUTION , 1981 .

[98]  H. Hauser,et al.  Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine. , 1981, Biochimica et biophysica acta.

[99]  R. Gandour On the importance of orientation in general base catalysis by carboxylate , 1981 .

[100]  W. Hol,et al.  Structure of bovine pancreatic phospholipase A2 at 1.7A resolution. , 1981, Journal of molecular biology.

[101]  K. H. Kalk,et al.  Active site and catalytic mechanism of phospholipase A2 , 1981, Nature.

[102]  J. Drenth,et al.  Methylation of histidine-48 in pancreatic phospholipase A2. Role of histidine and calcium ion in the catalytic mechanism. , 1980, Biochemistry.

[103]  R. Pearson,et al.  The molecular structure of lecithin dihydrate , 1979, Nature.

[104]  E. Dennis,et al.  Magnetic nonequivalence within the fatty acyl chains of phospholipids in membrane models: proton nuclear magnetic resonance studies of the α-methylene groups , 1978 .

[105]  H. Verheij,et al.  The primary structure of phospholipase A2 from porcine pancreas. A reinvestigation. , 1977, Biochimica et biophysica acta.

[106]  G. H. Reed,et al.  Phospholipase A2 complexes with gadolinium (III) and interaction of the enzyme-metal ion complex with monomeric and micellar alkylphosphorylcholines. Water proton nuclear magnetic relaxation studies. , 1976, Biochemistry.

[107]  P. Hitchcock,et al.  Structural chemistry of 1,2 dilauroyl-DL-phosphatidylethanolamine: molecular conformation and intermolecular packing of phospholipids. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[108]  W. A. Pieterson,et al.  Phospholipase A2 and its zymogen from porcine pancreas. V. Interaction of phospholipase A2 and its zymogen with divalent metal ions , 1974 .

[109]  J. Vidal,et al.  Zymogen-catalyzed hydrolysis of monomeric substrates and the presence of a recognition site for lipid-water interfaces in phospholipase A2. , 1974, Biochemistry.

[110]  M. Hunkapiller,et al.  Carbon nuclear magnetic resonance studies of the histidine residue in alpha-lytic protease. Implications for the catalytic mechanism of serine proteases. , 1973, Biochemistry.

[111]  M. Lazdunski,et al.  Zymogen-enzyme transformations. On the mechanism of activation of prophospholipase A. , 1972, European journal of biochemistry.

[112]  Scott Dl,et al.  The structural and functional roles of calcium ion in secretory phospholipases A2. , 1994 .

[113]  M. Roberts Nuclear magnetic resonance spectroscopy to follow phospholipase kinetics and products. , 1991, Methods in enzymology.

[114]  R. Heinrikson Dissection and sequence analysis of phospholipases A2. , 1991, Methods in enzymology.

[115]  J. Noel,et al.  A novel expression vector for high-level synthesis and secretion of foreign proteins in Escherichia coli: overproduction of bovine pancreatic phospholipase A2. , 1990, Gene.

[116]  W. Pruzanski,et al.  Localization and evolution of two human phospholipase A2 genes and two related genetic elements. , 1990, Advances in experimental medicine and biology.

[117]  T. Miyata,et al.  Purification and amino acid sequence of basic protein I, a lysine-49-phospholipase A2 with low activity, from the venom of Trimeresurus flavoviridis (Habu snake). , 1990, Toxicon : official journal of the International Society on Toxinology.

[118]  R. Kini,et al.  A model to explain the pharmacological effects of snake venom phospholipases A2. , 1989, Toxicon : official journal of the International Society on Toxinology.

[119]  M. James,et al.  Crystal structures of the helix-loop-helix calcium-binding proteins. , 1989, Annual review of biochemistry.

[120]  D. Osguthorpe,et al.  Inhibition of phospholipase A2; a molecular recognition study , 1988 .

[121]  N. Oda,et al.  Tryptophan residue essential for activity of Naja naja atra phospholipase A2. , 1988, Journal of biochemistry.

[122]  P. Sigler,et al.  Facing up to membranes: structure/function relationships in phospholipases. , 1987, Cold Spring Harbor symposia on quantitative biology.

[123]  B. Blagoev,et al.  Hydrolysis of short-chain phosphatidylcholines by bee venom phospholipase A2. , 1986, Toxicon : official journal of the International Society on Toxinology.

[124]  R. Kini,et al.  Structure-function relationships of phospholipases. II: Charge density distribution and the myotoxicity of presynaptically neurotoxic phospholipases. , 1986, Toxicon : official journal of the International Society on Toxinology.

[125]  R. Kini,et al.  Structure-function relationships of phospholipases. I: Prediction of presynaptic neurotoxicity. , 1986, Toxicon : official journal of the International Society on Toxinology.

[126]  L. März,et al.  The glycoprotein nature of phospholipase A2, hyaluronidase and acid phosphatase from honey-bee venom. , 1983, Toxicon : official journal of the International Society on Toxinology.

[127]  I. Tsai,et al.  Complete amino acid sequence of a phospholipase A2 from the venom of Naja naja atra (Taiwan cobra). , 1981, Toxicon : official journal of the International Society on Toxinology.

[128]  H. Verheij,et al.  Modification of carboxylate groups in bovine pancreatic phospholipase A2. Identification of aspartate-49 as Ca2+-binding ligand. , 1981, European journal of biochemistry.

[129]  H. Verheij,et al.  Structure and function of phospholiphase A2 , 1981 .

[130]  I. Pascher,et al.  MOLECULAR ARRANGEMENT AND CONFORMATION OF LIPIDS OF RELEVANCE TO MEMBRANE STRUCTURE , 1977 .

[131]  J. Feeney,et al.  Dipalmitoyl-lecithin: assignment of the 1H and 13C nuclear magnetic resonance spectra, and conformational studies , 1972 .

[132]  L. M. Deenen,et al.  THE SUBSTRATE SPECIFICITY OF PHOSPHOLIPASE A. , 1963 .