Stochastic Claims Reserving Methods in Insurance

Preface. Acknowledgement. 1 Introduction and Notation. 1.1 Claims Process. 1.2 Structural Framework to the Claims-Reserving Problem. 1.3 Outstanding Loss Liabilities, Classical Notation. 1.4 General Remarks. 2 Basic Methods. 2.1 Chain-Ladder Method (Distribution-Free). 2.2 Bornhuetter-Ferguson Method. 2.3 Number of IBNyR Claims, Poisson Model. 2.4 Poisson Derivation of the CL Algorithm. 3 Chain-Ladder Models. 3.1 Mean Square Error of Prediction. 3.2 Chain-Ladder Method. 3.3 Bounds in the Unconditional Approach. 3.4 Analysis of Error Terms in the CL Method. 4 Bayesian Models. 4.1 Benktander-Hovinen Method and Cape-Cod Model. 4.2 Credible Claims Reserving Methods. 4.3 Exact Bayesian Models. 4.4 Markov Chain Monte Carlo Methods. 4.5 Buhlmann-Straub Credibility Model. 4.6 Multidimensional Credibility Models. 4.7 Kalman Filter. 5 Distributional Models. 5.1 Log-Normal Model for Cumulative Claims. 5.2 Incremental Claims. 6 Generalized Linear Models. 6.1 Maximum Likelihood Estimators. 6.2 Generalized Linear Models Framework. 6.3 Exponential Dispersion Family. 6.4 Parameter Estimation in the EDF. 6.5 Other GLM Models. 6.6 Bornhuetter-Ferguson Method, Revisited. 7 Bootstrap Methods. 7.1 Introduction. 7.2 Log-Normal Model for Cumulative Sizes. 7.3 Generalized Linear Models. 7.4 Chain-Ladder Method. 7.5 Mathematical Thoughts about Bootstrapping Methods. 7.6 Synchronous Bootstrapping of Seemingly Unrelated Regressions. 8 Multivariate Reserving Methods. 8.1 General Multivariate Framework. 8.2 Multivariate Chain-Ladder Method. 8.3 Multivariate Additive Loss Reserving Method. 8.4 Combined Multivariate CL and ALR Method. 9 Selected Topics I: Chain-Ladder Methods. 9.1 Munich Chain-Ladder. 9.2 CL Reserving: A Bayesian Inference Model. 10 Selected Topics II: Individual Claims Development Processes. 10.1 Modelling Claims Development Processes for Individual Claims. 10.2 Separating IBNeR and IBNyR Claims. 11 Statistical Diagnostics. 11.1 Testing Age-to-Age Factors. 11.2 Non-Parametric Smoothing. Appendix A: Distributions. A.1 Discrete Distributions. A.2 Continuous Distributions. Bibliography. Index.

[1]  W. Ferguson Solvency: Models, Assessment and Regulation , 2009 .

[2]  R. Verrall,et al.  Predictive Distributions for Reserves which Separate True IBNR and IBNER Claims , 2009, ASTIN Bulletin.

[3]  Michael Merz,et al.  Uncertainty of the claims development result in the chain ladder method , 2009 .

[4]  Michael Merz,et al.  Bounds on the estimation error in the chain ladder method , 2008 .

[5]  Alois Gisler,et al.  Credibility for the Chain Ladder Reserving Method , 2008 .

[6]  G. McGuire,et al.  Individual Claim Loss Reserving Conditioned by Case Estimates , 2008, Annals of Actuarial Science.

[7]  Michael Merz,et al.  Prediction Error of the Multivariate Chain Ladder Reserving Method , 2008 .

[8]  M. Wüthrich Prediction error in the chain ladder method , 2008 .

[9]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[10]  Michael Merz,et al.  Combining Chain-Ladder and Additive Loss Reserving Method for Dependent Lines of Business , 2008 .

[11]  Kristina P. Sendova Operational Risk: Modeling Analytics , 2007, Technometrics.

[12]  Mario V. Wüthrich,et al.  Market-Consistent Actuarial Valuation , 2007 .

[13]  Alan Y. Chiang,et al.  Generalized Additive Models: An Introduction With R , 2007, Technometrics.

[14]  Pavel V. Shevchenko,et al.  The Quantification of Operational Risk Using Internal Data, Relevant External Data and Expert Opinion , 2007 .

[15]  Greg Taylor,et al.  A Synchronous Bootstrap to Account for Dependencies Between Lines of Business in the Estimation of Loss Reserve Prediction Error , 2007 .

[16]  M. Merz,et al.  Valuation portfolio in non-life insurance , 2007 .

[17]  C. R. Larsen An Individual Claims Reserving Model , 2007, ASTIN Bulletin.

[18]  M. Merz,et al.  Prediction Error of the Chain Ladder Reserving Method applied to Correlated Run-off Triangles , 2007, Annals of Actuarial Science.

[19]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[20]  M. Merz,et al.  Prediction Error of the Multivariate Additive Loss Reserving Method for Dependent Lines of Business , 2007 .

[21]  Carolyn Moclair,et al.  The structural modeling of operational risk via Bayesian inference: combining loss data with expert opinions , 2006 .

[22]  Christine M. Anderson-Cook,et al.  Book review: quantitative risk management: concepts, techniques and tools, revised edition, by A.F. McNeil, R. Frey and P. Embrechts. Princeton University Press, 2015, ISBN 978-0-691-16627-8, xix + 700 pp. , 2017, Extremes.

[23]  Gareth W. Peters,et al.  Bayesian Inference, Monte Carlo Sampling and Operational Risk. , 2006 .

[24]  Gary G. Venter Discussion of the Mean Square Error of Prediction in the Chain Ladder Reserving Method , 2006, ASTIN Bulletin.

[25]  M. Merz,et al.  The Mean Square Error of Prediction in the Chain Ladder Reserving Method (Mack and Murphy Revisited) , 2006, ASTIN Bulletin.

[26]  Gerhard Quarg,et al.  The Mean Square Error of Prediction in the Chain Ladder Reserving Method – A Comment , 2006, ASTIN Bulletin.

[27]  Alois Gisler The Estimation Error in the Chain-Ladder Reserving Method , 2006 .

[28]  A credibility approach to the munich chain-ladder method , 2006 .

[29]  Multivariate loss prediction in the multivariate additive model , 2006 .

[30]  Richard Verrall,et al.  Predictive Distributions of Outstanding Liabilities in General Insurance , 2006, Annals of Actuarial Science.

[31]  Thomas Mikosch,et al.  Non-Life Insurance Mathematics: An Introduction with Stochastic Processes , 2006 .

[32]  Piet de Jong,et al.  Forecasting Runoff Triangles , 2006 .

[33]  Mario V. Wüthrich,et al.  Estimation of Unallocated Loss Adjustment Expenses , 2006 .

[34]  S. Mildenhall A Multivariate Bayesian Claim Count Development Model With Closed Form Posterior and Predictive Distributions , 2006 .

[35]  Klaus D. Schmidt Methods and Models of Loss Reserving Based on Run-Off Triangles : A Unifying Survey , 2006 .

[36]  Klaus D. Schmidt Optimal and Additive Loss Reserving for Dependent Lines of Business , 2006 .

[37]  Richard Verrall,et al.  Incorporating expert opinion into a stochastic model for the chain-ladder technique , 2005 .

[38]  Gordon K. Smyth,et al.  Series evaluation of Tweedie exponential dispersion model densities , 2005, Stat. Comput..

[39]  Alois Gisler,et al.  A Course in Credibility Theory and its Applications , 2005 .

[40]  Greg Taylor,et al.  SYNCHRONOUS BOOTSTRAPPING OF SEEMINGLY UNRELATED REGRESSIONS , 2005 .

[41]  Gerhard Quarg,et al.  Munich chain ladder , 2004 .

[42]  Richard Verrall,et al.  A Bayesian Generalized Linear Model for the Bornhuetter-Ferguson Method of Claims Reserving , 2004 .

[43]  Julian Lowe A Practical Guide To Measuring Reserve Variability Using: Bootstrapping;, Operational Time And A Distribution-Free Approach , 2004 .

[44]  D GregTaylorPh. Risk and Discounted Loss Reserves , 2004 .

[45]  W. Neuhaus On the Estimation of Outstanding Claims , 2004 .

[46]  R. J. Verall Obtaining Predictive Distributions for Reserves Which Incorporate Expert Opinion , 2004 .

[47]  Jan Beirlant,et al.  On the distribution of discounted loss reserves using generalized linear models , 2003 .

[48]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Paulo J. R. Pinheiro,et al.  BOOTSTRAP METHODOLOGY IN CLAIM RESERVING , 2003 .

[50]  Claims Reserving Using Tweedie's Compound Poisson Model , 2003, ASTIN Bulletin.

[51]  Confidence Bounds for Discounted Loss Reserves , 2003 .

[52]  P. D. England,et al.  Addendum to “Analytic and bootstrap estimates of prediction errors in claims reserving” , 2002 .

[53]  P. England,et al.  Stochastic Claims Reserving in General Insurance , 2002, British Actuarial Journal.

[54]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[55]  Bent Jørgensen,et al.  Fitting Tweedie's Compound Poisson Model to Insurance Claims Data: Dispersion Modelling , 2002, ASTIN Bulletin.

[56]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .

[57]  Eric R. Ziegel,et al.  Multivariate Statistical Modelling Based on Generalized Linear Models , 2002, Technometrics.

[58]  Petros Dellaportas,et al.  Bayesian Modelling of Outstanding Liabilities Incorporating Claim Count Uncertainty , 2002 .

[59]  P M David Scollnik A.S.A. Implementation of Four Models for Outstanding Liabilities in Winbugs: A Discussion of a Paper by Ntzoufras and Dellaportas , 2002 .

[60]  Fia,et al.  Two Approaches to Calculating Correlated Reserve Indications Across Multiple Lines of Business , 2002 .

[61]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[62]  David P. M. Scollnik,et al.  Actuarial Modeling with MCMC and BUGs , 2001 .

[63]  Andrew J. G. Cairns,et al.  A discussion of parameter and model uncertainty in insurance , 2000 .

[64]  T. Mack Credible Claims Reserves: the Benktander Method , 2000, ASTIN Bulletin.

[65]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[66]  Debashis Kushary,et al.  Bootstrap Methods and Their Application , 2000, Technometrics.

[67]  G. Taylor,et al.  Loss Reserving: An Actuarial Perspective , 2000 .

[68]  Richard Verrall,et al.  An investigation into stochastic claims reserving models and the chain-ladder technique , 2000 .

[69]  G. Venter,et al.  A comparison of stochastic models that reproduce chain ladder reserve estimates , 2000 .

[70]  P. England,et al.  Comments on: "A comparison of stochastic models that reproduce chain ladder reserve estimates", by Mack and Venter , 2000 .

[71]  Life Insurance with Stochastic Interest Rates , 2000 .

[72]  Charles A. Hachemeister,et al.  CREDIBILITY FOR REGRESSION MODELS WITH APPLICATION TO TREND (REPRINT) , 2000 .

[73]  P. England,et al.  Analytic and bootstrap estimates of prediction errors in claims reserving , 1999 .

[74]  T. Herbst An application of randomly truncated data models in reserving IBNR claims , 1999 .

[75]  R. Norberg Prediction of Outstanding Liabilities II. Model Variations and Extensions , 1999, ASTIN Bulletin.

[76]  Ananda Sen,et al.  The Theory of Dispersion Models , 1997, Technometrics.

[77]  G. Taylor REGRESSION MODELS IN CLAIMS ANALYSIS I: THEORY , 1999 .

[78]  Thomas h ack Measuring the Variability of Chain Ladder Reserve Estimates , 1999 .

[79]  Unbiased Loss Development Factors , 1999 .

[80]  Richard Verrall,et al.  A Stochastic Model Underlying the Chain-Ladder Technique , 1998, British Actuarial Journal.

[81]  L. Halliwell Conjoint prediction of paid and incurred losses , 1998 .

[82]  E. Kremer On stochastic discounting , 1998 .

[83]  TESTING THE ASSUMPTIONS OF AGE-TO-AGE FACTORS , 1998 .

[84]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[85]  Klaus D. Schmidt,et al.  An Extension of Mack's Model for the Chain Ladder Method , 1996, ASTIN Bulletin.

[86]  E. Arjas,et al.  Claims Reserving in Continuous Time; A Nonparametric Bayesian Approach , 1996, ASTIN Bulletin.

[87]  A. E. Renshaw Claims reserving by joint modelling. , 1996 .

[88]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[89]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[90]  Walter R. Gilks,et al.  BUGS - Bayesian inference Using Gibbs Sampling Version 0.50 , 1995 .

[91]  J. Pfanzagl Parametric Statistical Theory , 1994 .

[92]  Bent Jørgensen,et al.  Fitting Tweedie's compound poisson model to insurance claims data , 1994 .

[93]  T. Mack Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates , 1993, ASTIN Bulletin.

[94]  Daniel Gogol Using expected loss ratios in reserving , 1993 .

[95]  Ragnar Norberg,et al.  Prediction of Outstanding Liabilities in Non-Life Insurance , 1993, ASTIN Bulletin.

[96]  W. Neuhaus Another pragmatic loss reserving method or Bornhuetter-Ferguson revisited , 1992 .

[97]  P. McCullagh,et al.  Bias Correction in Generalized Linear Models , 1991 .

[98]  Thomas Mack,et al.  A Simple Parametric Model for Rating Automobile Insurance or Estimating IBNR Claims Reserves , 1991, ASTIN Bulletin.

[99]  R. Schnieper Separating True IBNR and IBNER Claims , 1991, ASTIN Bulletin.

[100]  Richard Verrall,et al.  On the estimation of reserves from loglinear models , 1991 .

[101]  O. Hesselager Prediction of Outstanding Claims: A Hierarchical Credibility Approach , 1991 .

[102]  T. S. Wright A stochastic method for claims reserving in general insurance , 1990 .

[103]  Richard Verrall,et al.  Bayes and Empirical Bayes Estimation for the Chain Ladder Model , 1990, ASTIN Bulletin.

[104]  William S. Jewell Predicting IBNYR Events and Delays II. Discrete Time , 1990 .

[105]  Thomas Mack Improved estimation of IBNR claims by credibility theory , 1990 .

[106]  R. Verrall A STATE SPACE REPRESENTATION OF THE CHAIN LADDER LINEAR MODEL , 1989 .

[107]  A. Renshaw Chain ladder and interactive modelling. (Claims reserving and GLIM) , 1989 .

[108]  William S. Jewell,et al.  Predicting Ibnyr Events and Delays: I. Continuous Time , 1989, ASTIN Bulletin.

[109]  A Credibility Model with Random Fluctuations in Delay Probabilities for the Prediction of IBNR Claims ( , 1988 .

[110]  V. K. Srivastava,et al.  Seemingly unrelated regression equations models : estimation and inference , 1987 .

[111]  Erhard Kremer Einführung in die Versicherungsmathematik , 1985 .

[112]  Greg Taylor,et al.  Second moments of estimates of outstanding claims , 1983 .

[113]  Ben Zehnwirth,et al.  Claims reserving, state-space models and the Kalman filter , 1983 .

[114]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[115]  Erhard Kremer,et al.  IBNR-claims and the two-way model of ANOVA , 1982 .

[116]  F. De Vylder Estimation of IBNR claims by credibility theory , 1982 .

[117]  W. Jewell Two classes of covariance matrices giving simple linear forecasts , 1976 .

[118]  C. Fortuin,et al.  Correlation inequalities on some partially ordered sets , 1971 .

[119]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[120]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[121]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[122]  DAVID G. KENDALL,et al.  Introduction to Mathematical Statistics , 1947, Nature.

[123]  D. J. Finney On the Distribution of a Variate Whose Logarithm is Normally Distributed , 1941 .

[124]  E. Wright On the Coefficients of Power Series Having Exponential Singularities , 1933 .