Porous expanded vermiculite containing intercalated cetyltrimethylammonium: a versatile sorbent for the hormone ethinylestradiol from aqueous medium

[1]  R. Lago,et al.  Adsorption of the harmful hormone ethinyl estradiol inside hydrophobic cavities of CTA(+) intercalated montmorillonite. , 2016, Water science and technology : a journal of the International Association on Water Pollution Research.

[2]  R. Lago,et al.  Hydrophobic channels produced by micelle-structured CTAB inside MCM-41 mesopores: A unique trap for the hazardous hormone ethinyl estradiol , 2016 .

[3]  T. Polat,et al.  Determination of adsorptive properties of expanded vermiculite for the removal of C. I. Basic Red 9 from aqueous solution: Kinetic, isotherm and thermodynamic studies , 2015 .

[4]  Junfu Wei,et al.  Construction of amphiphilic segments on polypropylene nonwoven surface and its application in removal of endocrine disrupting compounds (EDCs) from aqueous solution , 2015 .

[5]  D. Tillitt,et al.  Effects of the environmental estrogenic contaminants bisphenol A and 17α-ethinyl estradiol on sexual development and adult behaviors in aquatic wildlife species. , 2015, General and comparative endocrinology.

[6]  L. Monser,et al.  Removal of estrone (E1), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2) from wastewater by liquid–liquid extraction , 2015 .

[7]  Ehsan Sadeghi Pouya,et al.  Theoretical and experimental studies of benzoic acid batch adsorption dynamics using vermiculite-based adsorbent , 2015 .

[8]  I. Kapdan,et al.  Ionic liquid intercalated clay sorbents for micro solid phase extraction of steroid hormones from water samples with analysis by liquid chromatography-tandem mass spectrometry. , 2014, Journal of chromatography. A.

[9]  S. Praveena,et al.  Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review. , 2014, Environment international.

[10]  M. Rümmeli,et al.  The influence of pH on organovermiculite structure stability , 2014 .

[11]  R. Cataluña,et al.  Development of a new adsorbent from agro-industrial waste and its potential use in endocrine disruptor compound removal. , 2014, Journal of hazardous materials.

[12]  R. Leyva-Ramos,et al.  Role of electrostatic interactions in the adsorption of cadmium(II) from aqueous solution onto vermiculite , 2014 .

[13]  R. Lago,et al.  Carbon - clay composite obtained from the decomposition of cellulose nanocrystals on the surface of expanded vermiculite , 2013 .

[14]  G. He,et al.  Effects of surfactant concentration on alkyl chain arrangements in dry and swollen organic montmorillonite , 2013 .

[15]  Wei Gao,et al.  Adsorption of ethinylestradiol (EE2) on polyamide 612: molecular modeling and effects of water chemistry. , 2013, Water research.

[16]  Yong-Gyun Park,et al.  Removal of bisphenol A and 17α-ethinyl estradiol by combined coagulation and adsorption using carbon nanomaterials and powdered activated carbon , 2013 .

[17]  A. Teixeira,et al.  Efficient and versatile fibrous adsorbent based on magnetic amphiphilic composites of chrysotile/carbon nanostructures for the removal of ethynilestradiol. , 2013, Journal of hazardous materials.

[18]  R. Lago,et al.  Combined processes of glycerol polymerization/carbonization/activation to produce efficient adsorbents for organic contaminants , 2012 .

[19]  Wei Gao,et al.  Removal of ethinylestradiol (EE2) from water via adsorption on aliphatic polyamides. , 2012, Water research.

[20]  Bruno R. S. Lemos,et al.  Amphiphilic magnetic composites based on layered vermiculite and fibrous chrysotile with carbon nanostructures: Application in catalysis , 2012 .

[21]  A. Teixeira,et al.  Hybrid magnetic amphiphilic composites based on carbon nanotube/nanofibers and layered silicates fragments as efficient adsorbent for ethynilestradiol. , 2012, Journal of colloid and interface science.

[22]  X. Chai,et al.  Preparation of trimethylchlorosilane-modified acid vermiculites for removing diethyl phthalate from water. , 2012, Journal of colloid and interface science.

[23]  R. Lago,et al.  Carbon nanostructures-modified expanded vermiculites produced by chemical vapor deposition from ethanol , 2011 .

[24]  M. Medeiros,et al.  Polimerização do glicerol: uma reação simples e versátil para produzir diferentes materiais a partir do coproduto do biodiesel , 2011 .

[25]  B. Saha,et al.  Removal of 17β-oestradiol and 17α-ethinyl oestradiol from water by activated carbons and hypercrosslinked polymeric phases , 2010 .

[26]  R. Lago,et al.  Catalytic growth of carbon nanotubes and nanofibers on vermiculite to produce floatable hydrophobic “nanosponges” for oil spill remediation , 2009 .

[27]  R. Lago,et al.  Modification of vermiculite by polymerization and carbonization of glycerol to produce highly efficient materials for oil removal. , 2009 .

[28]  M. Errera,et al.  Water Remediation by Adsorption of Phenol onto Hydrophobic Modified Clay , 2009 .

[29]  E. Mentasti,et al.  Interaction of metal ions with montmorillonite and vermiculite , 2008 .

[30]  R. Lago,et al.  Polymer coated vermiculite–iron composites: Novel floatable magnetic adsorbents for water spilled contaminants , 2006 .