Evolution of microbes and viruses: a paradigm shift in evolutionary biology?

When Charles Darwin formulated the central principles of evolutionary biology in the Origin of Species in 1859 and the architects of the Modern Synthesis integrated these principles with population genetics almost a century later, the principal if not the sole objects of evolutionary biology were multicellular eukaryotes, primarily animals and plants. Before the advent of efficient gene sequencing, all attempts to extend evolutionary studies to bacteria have been futile. Sequencing of the rRNA genes in thousands of microbes allowed the construction of the three- domain “ribosomal Tree of Life” that was widely thought to have resolved the evolutionary relationships between the cellular life forms. However, subsequent massive sequencing of numerous, complete microbial genomes revealed novel evolutionary phenomena, the most fundamental of these being: (1) pervasive horizontal gene transfer (HGT), in large part mediated by viruses and plasmids, that shapes the genomes of archaea and bacteria and call for a radical revision (if not abandonment) of the Tree of Life concept, (2) Lamarckian-type inheritance that appears to be critical for antivirus defense and other forms of adaptation in prokaryotes, and (3) evolution of evolvability, i.e., dedicated mechanisms for evolution such as vehicles for HGT and stress-induced mutagenesis systems. In the non-cellular part of the microbial world, phylogenomics and metagenomics of viruses and related selfish genetic elements revealed enormous genetic and molecular diversity and extremely high abundance of viruses that come across as the dominant biological entities on earth. Furthermore, the perennial arms race between viruses and their hosts is one of the defining factors of evolution. Thus, microbial phylogenomics adds new dimensions to the fundamental picture of evolution even as the principle of descent with modification discovered by Darwin and the laws of population genetics remain at the core of evolutionary biology.

[1]  Paulien Hogeweg,et al.  Evolutionary dynamics of RNA-like replicator systems: A bioinformatic approach to the origin of life. , 2012, Physics of life reviews.

[2]  O. Zhaxybayeva,et al.  Gene transfer agents: phage-like elements of genetic exchange , 2012, Nature Reviews Microbiology.

[3]  D. Raoult,et al.  Reclassification of Giant Viruses Composing a Fourth Domain of Life in the New Order Megavirales , 2012, Intervirology.

[4]  Sophie S Abby,et al.  Lateral gene transfer as a support for the tree of life , 2012, Proceedings of the National Academy of Sciences.

[5]  Orkun S. Soyer,et al.  The roles of integration in molecular systems biology. , 2012, Studies in history and philosophy of biological and biomedical sciences.

[6]  David Bikard,et al.  Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages. , 2012, Current opinion in immunology.

[7]  J. Olson,et al.  Barriers to Horizontal Gene Transfer in Campylobacter jejuni. , 2012, Advances in applied microbiology.

[8]  Mya Breitbart,et al.  Marine viruses: truth or dare. , 2012, Annual review of marine science.

[9]  Maureen A. O’Malley,et al.  Evolutionary systems biology: historical and philosophical perspectives on an emerging synthesis. , 2012, Advances in experimental medicine and biology.

[10]  C. López-Larrea,et al.  The origin of the bacterial immune response. , 2012, Advances in experimental medicine and biology.

[11]  E. Koonin,et al.  Genome-wide comparative analysis of phylogenetic trees: the prokaryotic forest of life. , 2012, Methods in molecular biology.

[12]  N. Moran,et al.  Extreme genome reduction in symbiotic bacteria , 2011, Nature Reviews Microbiology.

[13]  Otto X. Cordero,et al.  Ecology drives a global network of gene exchange connecting the human microbiome , 2011, Nature.

[14]  Eric Libby,et al.  Exclusion rules, bottlenecks and the evolution of stochastic phenotype switching , 2011, Proceedings of the Royal Society B: Biological Sciences.

[15]  T. Cebula,et al.  Genomic anatomy of Escherichia coli O157:H7 outbreaks , 2011, Proceedings of the National Academy of Sciences.

[16]  A. Bourke The validity and value of inclusive fitness theory , 2011, Proceedings of the Royal Society B: Biological Sciences.

[17]  C. Notredame,et al.  The rhizome of life: the sympatric Rickettsia felis paradigm demonstrates the random transfer of DNA sequences. , 2011, Molecular biology and evolution.

[18]  Finbarr Hayes,et al.  Toxins-antitoxins: diversity, evolution and function , 2011, Critical reviews in biochemistry and molecular biology.

[19]  Natalya Yutin,et al.  Phylogenomics of prokaryotic ribosomal proteins , 2011, Genome Biology.

[20]  E. Koonin The Logic of Chance: The Nature and Origin of Biological Evolution , 2011 .

[21]  Sagi Snir,et al.  Defense Islands in Bacterial and Archaeal Genomes and Prediction of Novel Defense Systems , 2011, Journal of bacteriology.

[22]  H. J. Beaumont,et al.  The evolutionary emergence of stochastic phenotype switching in bacteria , 2011, Microbial cell factories.

[23]  M. Lynch The Lower Bound to the Evolution of Mutation Rates , 2011, Genome biology and evolution.

[24]  Cheryl P. Andam,et al.  Biased gene transfer in microbial evolution , 2011, Nature Reviews Microbiology.

[25]  W. Martin Early evolution without a tree of life , 2011, Biology Direct.

[26]  B. Bergman,et al.  Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits , 2011, BMC Evolutionary Biology.

[27]  Maureen A. O’Malley,et al.  How stands the Tree of Life a century and a half after The Origin? , 2011, Biology Direct.

[28]  Eugene V. Koonin,et al.  Comparison of Phylogenetic Trees and Search for a Central Trend in the "Forest of Life" , 2011, J. Comput. Biol..

[29]  Stan J. J. Brouns,et al.  Evolution and classification of the CRISPR–Cas systems , 2011, Nature Reviews Microbiology.

[30]  K. Stingl,et al.  Two steps away from novelty – principles of bacterial DNA uptake , 2011, Molecular microbiology.

[31]  W. Doolittle,et al.  Lateral gene transfer , 2011, Current Biology.

[32]  Damon Lisch,et al.  Transposable element origins of epigenetic gene regulation. , 2011, Current opinion in plant biology.

[33]  U. Gophna,et al.  The complexity hypothesis revisited: connectivity rather than function constitutes a barrier to horizontal gene transfer. , 2011, Molecular biology and evolution.

[34]  T. Seeley,et al.  Kin selection and eusociality , 2011, Nature.

[35]  R. Michod,et al.  Inclusive fitness in evolution , 2011, Nature.

[36]  Patsy Haccou,et al.  Bet hedging or not? A guide to proper classification of microbial survival strategies , 2011, BioEssays : news and reviews in molecular, cellular and developmental biology.

[37]  Paulien Hogeweg,et al.  On the Origin of DNA Genomes: Evolution of the Division of Labor between Template and Catalyst in Model Replicator Systems , 2011, PLoS Comput. Biol..

[38]  Adi Stern,et al.  The phage‐host arms race: Shaping the evolution of microbes , 2011, BioEssays : news and reviews in molecular, cellular and developmental biology.

[39]  W. Martin,et al.  Networks of Gene Sharing among 329 Proteobacterial Genomes Reveal Differences in Lateral Gene Transfer Frequency at Different Phylogenetic Depths , 2010, Molecular biology and evolution.

[40]  Jean Baptiste,et al.  Philosophie Zoologique: Ou, Exposition des Considérations Relatives à L'Histoire Naturelle des Animaux , 2011 .

[41]  Tal Dagan,et al.  Phylogenomic networks. , 2011, Trends in microbiology.

[42]  Qun Ma,et al.  Cryptic prophages help bacteria cope with adverse environments , 2010, Nature communications.

[43]  J. Fischer De rerum natura. , 2010, American journal of surgery.

[44]  E. Koonin,et al.  The Tree and Net Components of Prokaryote Evolution , 2010, Genome biology and evolution.

[45]  L. Mcdaniel,et al.  High Frequency of Horizontal Gene Transfer in the Oceans , 2010, Science.

[46]  M. Nowak,et al.  The evolution of eusociality , 2010, Nature.

[47]  P. Piggot Epigenetic Switching: Bacteria Hedge Bets about Staying or Moving , 2010, Current Biology.

[48]  Sylvain Moineau,et al.  Bacteriophage resistance mechanisms , 2010, Nature Reviews Microbiology.

[49]  Didier Raoult,et al.  The post-Darwinist rhizome of life , 2010, The Lancet.

[50]  E. Leigh The group selection controversy. , 2010, Journal of evolutionary biology.

[51]  Alfred Russel Wallace,et al.  Contributions to the Theory of Natural Selection: On the Tendency of Varieties to depart indefinitely from the Original Type , 2016 .

[52]  Eugene V Koonin,et al.  CRISPR-Cas: an adaptive immunity system in prokaryotes , 2009, F1000 biology reports.

[53]  N. Pace Mapping the Tree of Life: Progress and Prospects , 2009, Microbiology and Molecular Biology Reviews.

[54]  E. Koonin,et al.  Is evolution Darwinian or/and Lamarckian? , 2009, Biology Direct.

[55]  P. Forterre,et al.  The Great Billion‐year War between Ribosome‐ and Capsid‐encoding Organisms (Cells and Viruses) as the Major Source of Evolutionary Novelties , 2009, Annals of the New York Academy of Sciences.

[56]  Paulien Hogeweg,et al.  Multilevel Selection in Models of Prebiotic Evolution II: A Direct Comparison of Compartmentalization and Spatial Self-Organization , 2009, PLoS Comput. Biol..

[57]  Eugene V Koonin,et al.  The fundamental units, processes and patterns of evolution, and the Tree of Life conundrum , 2009, Biology Direct.

[58]  C. Brochier,et al.  Phylogeny of prokaryotes: does it exist and why should we care? , 2009, Research in microbiology.

[59]  Maureen A. O’Malley,et al.  Prokaryotic evolution and the tree of life are two different things , 2009, Biology Direct.

[60]  W. Martin,et al.  Getting a better picture of microbial evolution en route to a network of genomes , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[61]  Stan J. J. Brouns,et al.  CRISPR-based adaptive and heritable immunity in prokaryotes. , 2009, Trends in biochemical sciences.

[62]  D. Raoult There is no such thing as a tree of life (and of course viruses are out!) , 2009, Nature Reviews Microbiology.

[63]  E. Koonin,et al.  Compelling reasons why viruses are relevant for the origin of cells , 2009, Nature Reviews Microbiology.

[64]  E. Koonin,et al.  Search for a 'Tree of Life' in the thicket of the phylogenetic forest , 2009, Journal of biology.

[65]  István Miklós,et al.  Streamlining and Large Ancestral Genomes in Archaea Inferred with a Phylogenetic Birth-and-Death Model , 2009, Molecular biology and evolution.

[66]  E. Koonin,et al.  Comprehensive comparative-genomic analysis of Type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes , 2009, Biology Direct.

[67]  F. Rohwer,et al.  Viruses manipulate the marine environment , 2009, Nature.

[68]  L. Håvarstein,et al.  Regulation of natural genetic transformation and acquisition of transforming DNA in Streptococcus pneumoniae. , 2009, FEMS microbiology reviews.

[69]  J. Claverys,et al.  The genetic transformation machinery: composition, localization, and mechanism. , 2009, FEMS microbiology reviews.

[70]  W. Doolittle,et al.  On the origin of prokaryotic species. , 2009, Genome research.

[71]  D. Moreira,et al.  Ten reasons to exclude viruses from the tree of life , 2009, Nature Reviews Microbiology.

[72]  S. Rosenberg,et al.  Extreme Genome Repair , 2009, Cell.

[73]  L. Van Melderen,et al.  Bacterial Toxin–Antitoxin Systems: More Than Selfish Entities? , 2009, PLoS genetics.

[74]  N. Goldenfeld,et al.  How the Microbial World Saved Evolution from the Scylla of Molecular Biology and the Charybdis of the Modern Synthesis , 2009, Microbiology and Molecular Biology Reviews.

[75]  C. Fraser,et al.  The Bacterial Species Challenge: Making Sense of Genetic and Ecological Diversity , 2009, Science.

[76]  Eugene V Koonin,et al.  Evolution of genome architecture. , 2009, The international journal of biochemistry & cell biology.

[77]  E. Koonin Darwinian evolution in the light of genomics , 2008, Nucleic acids research.

[78]  D. Crook,et al.  Genomic islands: tools of bacterial horizontal gene transfer and evolution , 2008, FEMS microbiology reviews.

[79]  Zhixiong Xie,et al.  Horizontal Gene Transfer , 2003, Methods in Molecular Biology.

[80]  Olga Zhaxybayeva,et al.  Detection and quantitative assessment of horizontal gene transfer. , 2009, Methods in molecular biology.

[81]  J. Gogarten,et al.  Horizontal Gene Transfer , 2009 .

[82]  H. Vlamakis,et al.  Generation of multiple cell types in Bacillus subtilis. , 2009, FEMS microbiology reviews.

[83]  Y. Boucher,et al.  Epistemological impacts of horizontal gene transfer on classification in microbiology. , 2009, Methods in molecular biology.

[84]  Leslie G. Valiant,et al.  Evolvability , 2009, JACM.

[85]  J. Brookfield Evolution and evolvability: celebrating Darwin 200 , 2009, Biology Letters.

[86]  L. Marraffini,et al.  CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA , 2008, Science.

[87]  J. Browne Birthdays to remember , 2008, Nature.

[88]  E. Koonin,et al.  Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world , 2008, Nucleic acids research.

[89]  Jeff F. Miller,et al.  Diversity-generating retroelement homing regenerates target sequences for repeated rounds of codon rewriting and protein diversification. , 2008, Molecular cell.

[90]  O. Kuipers,et al.  Bistability, epigenetics, and bet-hedging in bacteria. , 2008, Annual review of microbiology.

[91]  Tal Dagan,et al.  Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution , 2008, Proceedings of the National Academy of Sciences.

[92]  J. Paul Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? , 2008, The ISME Journal.

[93]  Jaysheel D. Bhavsar,et al.  Phages across the biosphere: contrasts of viruses in soil and aquatic environments. , 2008, Research in microbiology.

[94]  F. Taddei,et al.  Bet-hedging and epigenetic inheritance in bacterial cell development , 2008, Proceedings of the National Academy of Sciences.

[95]  P. Forterre,et al.  Redefining viruses: lessons from Mimivirus , 2008, Nature Reviews Microbiology.

[96]  G. Wagner,et al.  Evolution of Evolvability in a Developmental Model , 2008, Evolution; international journal of organic evolution.

[97]  Philippe Horvath,et al.  Phage Response to CRISPR-Encoded Resistance in Streptococcus thermophilus , 2007, Journal of bacteriology.

[98]  M. Pigliucci Is evolvability evolvable? , 2008, Nature Reviews Genetics.

[99]  E. Koonin,et al.  Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea , 2007, Biology Direct.

[100]  Todd H. Oakley,et al.  The new biology: beyond the Modern Synthesis , 2007, Biology Direct.

[101]  C. Suttle Marine viruses — major players in the global ecosystem , 2007, Nature Reviews Microbiology.

[102]  Uri Gophna,et al.  Complexity, connectivity, and duplicability as barriers to lateral gene transfer , 2007, Genome Biology.

[103]  Jeff F. Miller,et al.  Diversity-generating retroelements. , 2007, Current opinion in microbiology.

[104]  I. K. Jordan,et al.  Origin and Evolution of Human microRNAs From Transposable Elements , 2007, Genetics.

[105]  F. Cohan,et al.  A Systematics for Discovering the Fundamental Units of Bacterial Diversity , 2007, Current Biology.

[106]  C. Feschotte,et al.  Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. , 2007, Gene.

[107]  Reinhard Bürger,et al.  THE MUTATION MATRIX AND THE EVOLUTION OF EVOLVABILITY , 2007, Evolution; international journal of organic evolution.

[108]  Eric Bapteste,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:Pattern pluralism and the Tree of Life hypothesis , 2007 .

[109]  Richard D. Hayes,et al.  Draft Genome Sequence of the Sexually Transmitted Pathogen Trichomonas vaginalis , 2007, Science.

[110]  S. Rosenberg,et al.  Mutation as a Stress Response and the Regulation of Evolvability , 2007, Critical reviews in biochemistry and molecular biology.

[111]  Eduardo N. Taboada,et al.  Genome evolution in major Escherichia coli O157:H7 lineages , 2007, BMC Genomics.

[112]  W. Martin,et al.  The origin of mitochondria in light of a fluid prokaryotic chromosome model , 2007, Biology Letters.

[113]  K. Konstantinidis,et al.  The bacterial species definition in the genomic era , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[114]  W. Martin,et al.  The tree of one percent , 2006, Genome Biology.

[115]  Katherine H. Huang,et al.  Comparative genomics of the lactic acid bacteria , 2006, Proceedings of the National Academy of Sciences.

[116]  Andrés Moya,et al.  A Small Microbial Genome: The End of a Long Symbiotic Relationship? , 2006, Science.

[117]  E. Koonin,et al.  The ancient Virus World and evolution of cells , 2006, Biology Direct.

[118]  M. Lynch Streamlining and simplification of microbial genome architecture. , 2006, Annual review of microbiology.

[119]  R. Losick,et al.  Bistability in bacteria , 2006, Molecular microbiology.

[120]  J. Claverie Viruses take center stage in cellular evolution , 2006, Genome Biology.

[121]  J. P. Dillard,et al.  Natural transformation of Neisseria gonorrhoeae: from DNA donation to homologous recombination , 2006, Molecular microbiology.

[122]  Jianxin Ma,et al.  Analysis and mapping of randomly chosen bacterial artificial chromosome clones from hexaploid bread wheat. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[123]  R. Gadagkar Nothing in Biology Makes Sense Except in the Light of Evolution , 2005 .

[124]  Eugene V Koonin,et al.  On the origin of genomes and cells within inorganic compartments , 2005, Trends in Genetics.

[125]  S. Rosenberg,et al.  A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation. , 2005, Molecular cell.

[126]  C. Suttle Viruses in the sea , 2005, Nature.

[127]  B. Snel,et al.  Genome trees and the nature of genome evolution. , 2005, Annual review of microbiology.

[128]  J. Townsend,et al.  Horizontal gene transfer, genome innovation and evolution , 2005, Nature Reviews Microbiology.

[129]  M. Batzer,et al.  From the margins of the genome: mobile elements shape primate evolution , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[130]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[131]  Leon Goldovsky,et al.  The net of life: reconstructing the microbial phylogenetic network. , 2005, Genome research.

[132]  W. Doolittle,et al.  Do orthologous gene phylogenies really support tree-thinking? , 2005, BMC Evolutionary Biology.

[133]  Mark E. Borrello,et al.  The rise, fall and resurrection of group selection. , 2005, Endeavour.

[134]  J. P. Dillard,et al.  Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system , 2005, Molecular microbiology.

[135]  W. Arber,et al.  Promotion and limitation of genetic exchange , 1979, Experientia.

[136]  N. McCarthy,et al.  Time to Change , 2017 .

[137]  R. Edwards,et al.  Viral metagenomics , 2005, Nature Reviews Microbiology.

[138]  J. Claverie,et al.  The 1.2-Megabase Genome Sequence of Mimivirus , 2004, Science.

[139]  Mikhail S. Gelfand,et al.  Genome-Wide Molecular Clock and Horizontal Gene Transfer in Bacterial Evolution , 2004, Journal of bacteriology.

[140]  R. Simons,et al.  Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements , 2004, Nature.

[141]  David J. Earl,et al.  Evolvability is a selectable trait. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[142]  I. Gordo,et al.  ADAPTIVE EVOLUTION OF ASEXUAL POPULATIONS UNDER MULLER'S RATCHET , 2004, Evolution; international journal of organic evolution.

[143]  H. Kazazian Mobile Elements: Drivers of Genome Evolution , 2004, Science.

[144]  Noel Thompson,et al.  On the Tendency of Varieties to Depart Indefinitely from the Original Type , 2004 .

[145]  Rupert Read,et al.  The Road since 'Structure' , 2004 .

[146]  M. Weinbauer,et al.  Are viruses driving microbial diversification and diversity? , 2003, Environmental microbiology.

[147]  R. Stanier,et al.  The concept of a bacterium , 2004, Archiv für Mikrobiologie.

[148]  S. Andersson,et al.  Evolution of minimal-gene-sets in host-dependent bacteria. , 2004, Trends in microbiology.

[149]  C. Woese The Archaeal Concept and the World it Lives in: A Retrospective , 2004, Photosynthesis Research.

[150]  Eugene V Koonin,et al.  Horizontal gene transfer: the path to maturity , 2003, Molecular microbiology.

[151]  S. Rosenberg,et al.  Modulating Mutation Rates in the Wild , 2003, Science.

[152]  D. Penny,et al.  Prokaryote and eukaryote evolvability. , 2003, Bio Systems.

[153]  G. Glazko,et al.  Origin of a substantial fraction of human regulatory sequences from transposable elements. , 2003, Trends in genetics : TIG.

[154]  S. Rosenberg,et al.  Microbiology and evolution. Modulating mutation rates in the wild. , 2003, Science.

[155]  Michael Y. Galperin,et al.  Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes , 2003, BMC Evolutionary Biology.

[156]  N. Grishin,et al.  Genome trees and the tree of life. , 2002, Trends in genetics : TIG.

[157]  R. Overbeek,et al.  The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. , 2002, Journal of molecular microbiology and biotechnology.

[158]  Cédric Feschotte,et al.  Plant transposable elements: where genetics meets genomics , 2002, Nature Reviews Genetics.

[159]  Robert H. White,et al.  The genome of M. acetivorans reveals extensive metabolic and physiological diversity. , 2002, Genome research.

[160]  B. Snel,et al.  Genomes in flux: the evolution of archaeal and proteobacterial gene content. , 2002, Genome research.

[161]  F. Bushman Lateral DNA transfer : mechanisms and consequences , 2002 .

[162]  E. Koonin,et al.  Two C or not two C: recurrent disruption of Zn-ribbons, gene duplication, lineage-specific gene loss, and horizontal gene transfer in evolution of bacterial ribosomal proteins , 2001, Genome Biology.

[163]  N. W. Davis,et al.  Genome sequence of enterohaemorrhagic Escherichia coli O157:H7 , 2001, Nature.

[164]  T. Sicheritz-Pontén,et al.  A phylogenomic approach to microbial evolution. , 2001, Nucleic acids research.

[165]  E. Koonin,et al.  Horizontal gene transfer in prokaryotes: quantification and classification. , 2001, Annual review of microbiology.

[166]  K. Tamura,et al.  Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci U S A , 2001 .

[167]  H Philippe,et al.  The evolutionary history of ribosomal protein RpS14: horizontal gene transfer at the heart of the ribosome. , 2000, Trends in genetics : TIG.

[168]  Gary J. Olsen,et al.  Aminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process , 2000, Microbiology and Molecular Biology Reviews.

[169]  B. Charlesworth,et al.  The degeneration of asexual haploid populations and the speed of Muller's ratchet. , 2000, Genetics.

[170]  G. Walker,et al.  The SOS response: recent insights into umuDC-dependent mutagenesis and DNA damage tolerance. , 2000, Annual review of genetics.

[171]  J. Hacker,et al.  Pathogenicity islands and the evolution of microbes. , 2000, Annual review of microbiology.

[172]  E V Koonin,et al.  Evolution of aminoacyl-tRNA synthetases--analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. , 1999, Genome research.

[173]  S. Salzberg,et al.  Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima , 1999, Nature.

[174]  J. Lake,et al.  Horizontal gene transfer among genomes: the complexity hypothesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[175]  B. Snel,et al.  Genome phylogeny based on gene content , 1999, Nature Genetics.

[176]  J. Maynard Smith The units of selection. , 2021, Novartis Foundation symposium.

[177]  E V Koonin,et al.  Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. , 1998, Trends in genetics : TIG.

[178]  John Maynard Smith,et al.  From replicators to reproducers: the first major transitions leading to life. , 1997, Journal of theoretical biology.

[179]  N. Pace A molecular view of microbial diversity and the biosphere. , 1997, Science.

[180]  D. Andersson,et al.  Muller's ratchet decreases fitness of a DNA-based microbe. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[181]  O. Avery,et al.  Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types : Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III ” ( 1944 ) by , 2019 .

[182]  F J Ayala,et al.  Tempo and mode in evolution. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[183]  M. Syvanen Horizontal gene transfer: evidence and possible consequences. , 1994, Annual review of genetics.

[184]  J. M. Smith,et al.  How clonal are bacteria? , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[185]  A. Moya,et al.  Rapid fitness losses in mammalian RNA virus clones due to Muller's ratchet. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[186]  Lin Chao,et al.  Fitness of RNA virus decreased by Muller's ratchet , 1990, Nature.

[187]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[188]  C. Woese,et al.  Bacterial evolution , 1987, Microbiological reviews.

[189]  M. Syvanen,et al.  Cross-species gene transfer; implications for a new theory of evolution. , 1985, Journal of theoretical biology.

[190]  H. Smith,et al.  Genetic transformation. , 1981, Annual review of biochemistry.

[191]  A. Campbell Evolutionary significance of accessory DNA elements in bacteria. , 1981, Annual review of microbiology.

[192]  O. Avery,et al.  STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES , 1944, The Journal of experimental medicine.

[193]  K. B. Low,et al.  Modes of gene transfer and recombination in bacteria. , 1978, Annual review of genetics.

[194]  C. Woese,et al.  Phylogenetic structure of the prokaryotic domain: The primary kingdoms , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[195]  R. Lewontin The Units of Selection , 1970, The Structure and Confirmation of Evolutionary Theory.

[196]  M. Sluyser The Origin of DNA , 2015 .

[197]  T. Kuhn,et al.  The Structure of Scientific Revolutions. , 1964 .

[198]  C. Pigott Genetics and the Origin of Species , 1959, Nature.

[199]  Maclyn McCarty,et al.  STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES , 1944, The Journal of experimental medicine.

[200]  R. Punnett,et al.  The Genetical Theory of Natural Selection , 1930, Nature.

[201]  W. E. Ritter AS TO THE CAUSES OF EVOLUTION. , 1923, Science.

[202]  N. Pierce Origin of Species , 1914, Nature.

[203]  Ernst Haeckel,et al.  The Wonders of Life A Popular Study of Biological Philosophy , 1997, Nature.

[204]  C. Darwin,et al.  On the Tendency of Species to form Varieties; and on the Perpetuation of Varieties and Species by Natural Means of Selection , 1858 .