Natural Neighbor Interpolation and Order of Continuity

In this paper we give a survey on natural neighbor based inter polation, a class of local scattered data interpolation schemes that de fine their support onatural neighbors in the Voronoi diagram of the input data sites. We discuss the existing work with respect to common aspects of scattered data interp olation and focus on smoothness of the interpolant.

[1]  V. D. Ivanov,et al.  The non-Sibsonian interpolation : A new method of interpolation of the values of a function on an arbitrary set of points , 1997 .

[2]  Hisamoto Hiyoshi,et al.  Stable Computation of Natural Neighbor Interpolation , 2008, Int. J. Comput. Geom. Appl..

[3]  Kokichi Sugihara,et al.  Surface interpolation based on new local coordinates , 1999, Comput. Aided Des..

[4]  Bruce R. Piper Properties of Local Coordinates Based on Dirichlet Tesselations , 1993, Geometric Modelling.

[5]  R. Sibson,et al.  A brief description of natural neighbor interpolation , 1981 .

[6]  Gerald E. Farin,et al.  Surfaces over Dirichlet tessellations , 1990, Comput. Aided Geom. Des..

[7]  John C. Davis,et al.  Contouring: A Guide to the Analysis and Display of Spatial Data , 1992 .

[8]  Dinesh Manocha,et al.  Fast computation of generalized Voronoi diagrams using graphics hardware , 1999, SIGGRAPH.

[9]  Bernd Hamann,et al.  Discrete Sibson interpolation , 2006, IEEE Transactions on Visualization and Computer Graphics.

[10]  Kokichi Sugihara,et al.  An Interpolant Based on Line Segment Voronoi Diagrams , 1998, JCDCG.

[11]  Norman H. Christ,et al.  Weights of links and plaquettes in a random lattice , 1982 .

[12]  Kokichi Sugihara,et al.  Improving the Global Continuity of the Natural Neighbor Interpolation , 2004, ICCSA.

[13]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[14]  Christopher M. Gold,et al.  Local coordinates and interpolation in a Voronoi diagram for a set of points and line segments. , 1998 .

[15]  Gerald E. Farin,et al.  A Transfinite Form of Sibson's Interpolant , 1999, Discret. Appl. Math..

[16]  Tom Bobach COMPARISON OF VORONOI BASED SCATTERED DATA INTERPOLATION SCHEMES , 2006 .

[17]  Suresh Venkatasubramanian,et al.  Hardware-Assisted Natural Neighbor Interpolation , 2005, ALENEX/ANALCO.

[18]  R. Sibson A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  Julia Flötotto,et al.  A Coordinate System associated to a Point Cloud issued from a Manifold: Definition, Properties and Applications. (Un système de coordonnées associé à un échantillon de points d'une variété: définition, propriétés et applications) , 2003 .

[20]  Christopher M. Gold,et al.  Line voronoi diagram based interpolation and application to digital terrain modelling , 2001, CCCG.

[21]  Komei Fukuda,et al.  Exact volume computation for polytopes: a practical study , 1996 .

[22]  David Letscher,et al.  Delaunay triangulations and Voronoi diagrams for Riemannian manifolds , 2000, SCG '00.

[23]  AurenhammerFranz Voronoi diagramsa survey of a fundamental geometric data structure , 1991 .

[24]  Jean-Daniel Boissonnat,et al.  Natural neighbor coordinates of points on a surface , 2001, Comput. Geom..

[25]  Kokichi Sugihara,et al.  Voronoi-based interpolation with higher continuity , 2000, SCG '00.

[26]  Martin Bertram,et al.  Issues and Implementation of C1 and C2 Natural Neighbor Interpolation , 2006, ISVC.

[27]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.