Natural Neighbor Interpolation and Order of Continuity
暂无分享,去创建一个
[1] V. D. Ivanov,et al. The non-Sibsonian interpolation : A new method of interpolation of the values of a function on an arbitrary set of points , 1997 .
[2] Hisamoto Hiyoshi,et al. Stable Computation of Natural Neighbor Interpolation , 2008, Int. J. Comput. Geom. Appl..
[3] Kokichi Sugihara,et al. Surface interpolation based on new local coordinates , 1999, Comput. Aided Des..
[4] Bruce R. Piper. Properties of Local Coordinates Based on Dirichlet Tesselations , 1993, Geometric Modelling.
[5] R. Sibson,et al. A brief description of natural neighbor interpolation , 1981 .
[6] Gerald E. Farin,et al. Surfaces over Dirichlet tessellations , 1990, Comput. Aided Geom. Des..
[7] John C. Davis,et al. Contouring: A Guide to the Analysis and Display of Spatial Data , 1992 .
[8] Dinesh Manocha,et al. Fast computation of generalized Voronoi diagrams using graphics hardware , 1999, SIGGRAPH.
[9] Bernd Hamann,et al. Discrete Sibson interpolation , 2006, IEEE Transactions on Visualization and Computer Graphics.
[10] Kokichi Sugihara,et al. An Interpolant Based on Line Segment Voronoi Diagrams , 1998, JCDCG.
[11] Norman H. Christ,et al. Weights of links and plaquettes in a random lattice , 1982 .
[12] Kokichi Sugihara,et al. Improving the Global Continuity of the Natural Neighbor Interpolation , 2004, ICCSA.
[13] D. F. Watson. Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..
[14] Christopher M. Gold,et al. Local coordinates and interpolation in a Voronoi diagram for a set of points and line segments. , 1998 .
[15] Gerald E. Farin,et al. A Transfinite Form of Sibson's Interpolant , 1999, Discret. Appl. Math..
[16] Tom Bobach. COMPARISON OF VORONOI BASED SCATTERED DATA INTERPOLATION SCHEMES , 2006 .
[17] Suresh Venkatasubramanian,et al. Hardware-Assisted Natural Neighbor Interpolation , 2005, ALENEX/ANALCO.
[18] R. Sibson. A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.
[19] Julia Flötotto,et al. A Coordinate System associated to a Point Cloud issued from a Manifold: Definition, Properties and Applications. (Un système de coordonnées associé à un échantillon de points d'une variété: définition, propriétés et applications) , 2003 .
[20] Christopher M. Gold,et al. Line voronoi diagram based interpolation and application to digital terrain modelling , 2001, CCCG.
[21] Komei Fukuda,et al. Exact volume computation for polytopes: a practical study , 1996 .
[22] David Letscher,et al. Delaunay triangulations and Voronoi diagrams for Riemannian manifolds , 2000, SCG '00.
[23] AurenhammerFranz. Voronoi diagramsa survey of a fundamental geometric data structure , 1991 .
[24] Jean-Daniel Boissonnat,et al. Natural neighbor coordinates of points on a surface , 2001, Comput. Geom..
[25] Kokichi Sugihara,et al. Voronoi-based interpolation with higher continuity , 2000, SCG '00.
[26] Martin Bertram,et al. Issues and Implementation of C1 and C2 Natural Neighbor Interpolation , 2006, ISVC.
[27] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.